circular convolution and Linear convolution

ShinyChristobel 229 views 39 slides May 09, 2024
Slide 1
Slide 1 of 39
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39

About This Presentation

circular convolution and Linear convolution


Slide Content

DIGITAL SIGNAL
PROCESSING
MODULE- 2
Circular Convolution,
Linear Filtering
By
Ms.J.Shiny Christobel, AP/ECE,
Sri Ramakrishna Institute of Technology, Coimbatore
1

X1(n) is fixed & marked in Anti Clockwise Direction
X2(n) is marked in clockwise direction . But
Rotation in Anti Clockwise Direction
Solution:
2 9-May-24

X1(n)
3
X2(n)
1
-1
3
-2
1
-1
2
3
0
0
y(0) = [1x1] + [-1x0] + [-2x0] + [3x3] + [2x-1]

= 1 + 0 + 0 + 9 - 2 = 8
Rotate x
2(n) in anti-
clockwise direction
9-May-24

X1(n)
4
X2(n)
1
-1
3
-2
2
-1
3
0
0
1
y(1) = [1x2] + [-1x1] + [-2x0] + [3x0] + [3x-1]

= 2 - 1 + 0 + 0 - 3 = -2
9-May-24

X1(n)
5
X2(n)
1
-1
3
-2
3
-1
0
0
1
2
y(2) = [1x3] + [-1x2] + [-2x1] + [3x0] + [0x-1]

= 3 - 2 - 2 + 0 + 0 = -1
9-May-24

X1(n)
6
X2(n)
1
-1
3
-2
0
-1
0
1
2
3
y(3) = [1x0] + [-1x3] + [-2x2] + [3x1] + [0x-1]

= 0 - 3 - 4 + 3 + 0 = -4
9-May-24

X1(n)
7
X2(n)
1
-1
-2
0
-1
1
2
3
0
3
y(4) = [1x0] + [-1x0] + [-2x3] + [3x2] + [1x-1]
= 0 + 0 - 6 + 6 - 1 = -1
Ans:
y(n) = { 8, -2, -1, -4, -1 }
9-May-24

8 9-May-24

9 9-May-24

10 9-May-24

11 9-May-24

12 9-May-24

13 9-May-24

Linear Convolution
14 9-May-24

Circular Convolution without zero padding
15 9-May-24

Circular Convolution with zero padding
x(n) = {1,2,3,1} , length of x(n) is L = 4
h(n) = {1,1,1} , length of h(n) is M = 3
if
append (L-1) zeroes at the end of x(n)
append (M-1) zeroes at the end of h(n)
then the given sequence will be
x(n) = {1,2,3,1,0,0}
h(n) = {1,1,1,0,0,0}
16 9-May-24

17 9-May-24

18 9-May-24

19 9-May-24

Use of FFT in Linear Filtering
Methods:
(1)Overlap Add Method
(2)Overlap Save Method

Fast Convolution
Linear filtering Long Sequences
20 9-May-24

21 9-May-24

22 9-May-24

23 9-May-24

24 9-May-24

25 9-May-24

26 9-May-24

27 9-May-24

28 9-May-24

29 9-May-24

30 9-May-24

31 9-May-24

32 9-May-24

33 9-May-24

34 9-May-24

35 9-May-24

36 9-May-24

37 9-May-24

38 9-May-24

39 9-May-24