Class 10 Maths Real Numbers.pptx ppt ppt

MVHerwadkarschool 355 views 6 slides Jul 01, 2024
Slide 1
Slide 1 of 6
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6

About This Presentation

ppt


Slide Content

B.J.P.S Samiti’s M.V.HERWADKAR ENGLISH MEDIUM HIGH SCHOOL CLASS: 10 th CHAPTER 1: REAL NUMBERS Program: Semester: Course: NAME OF THE COURSE Staff Name: VINAYAK PATIL 1

REAL NUMBERS Real numbers can be defined as the union of both rational and irrational numbers. They can be both positive or negative and are demoted by the symbol β€œR” Real numbers include integers, fractions and decimals

Fundamental Theorem of Arithmetic πΈπ‘£π‘’π‘Ÿπ‘¦ π‘π‘œπ‘šπ‘π‘œπ‘ π‘–π‘‘π‘’ π‘›π‘’π‘šπ‘π‘’π‘Ÿ π‘π‘Žπ‘› 𝑏𝑒 𝑒π‘₯π‘π‘Ÿπ‘’π‘ π‘ π‘’π‘‘ π‘Žπ‘  π‘Ž π‘π‘Ÿπ‘œπ‘‘π‘’π‘π‘‘ π‘œπ‘“ π‘π‘Ÿπ‘–π‘šπ‘’π‘ , π‘Žπ‘›π‘‘ π‘‘β„Žπ‘–π‘  π‘“π‘Žπ‘π‘‘π‘œπ‘Ÿπ‘–π‘ π‘Žπ‘‘π‘–π‘œπ‘› 𝑖𝑠 π‘’π‘›π‘–π‘žπ‘’π‘’ , π‘Žπ‘π‘Žπ‘Ÿπ‘‘ π‘“π‘Ÿπ‘œπ‘š π‘‘β„Žπ‘’ π‘œπ‘Ÿπ‘‘π‘’π‘Ÿ 𝑖𝑛 π‘€β„Žπ‘–π‘β„Ž π‘‘β„Žπ‘’π‘¦ π‘œπ‘π‘π‘’π‘Ÿ. Now factorize a large number say 32760 . 32760=2x2x2x3x3x5x7x13x13

HCF and LCM of a number For any two positive integers a and b, HCF (a, b) Γ— LCM (a, b) = a Γ— b. HCF (a, b) = LCM (a, b) = Β 

Revisiting Irrational Numbers A number which cannot be written in the form where p and q are integers and q β‰  0 Example: Theorem : 𝐿𝑒𝑑 𝑝 𝑏𝑒 π‘Ž π‘π‘Ÿπ‘–π‘šπ‘’ π‘›π‘’π‘šπ‘π‘’π‘Ÿ 𝑖𝑓 𝑝 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 π‘Ž 2 , π‘‘β„Žπ‘’π‘› 𝑝 𝑑𝑖𝑣𝑖𝑑𝑒𝑠 π‘Ž, 𝑖𝑠 π‘Ž π‘π‘œπ‘ π‘–π‘‘π‘–π‘£π‘’ π‘–π‘›π‘‘π‘’π‘”π‘’π‘Ÿ. Β 

𝑖𝑠 π‘–π‘Ÿπ‘Ÿπ‘Žπ‘‘π‘–π‘œπ‘›π‘Žπ‘™ Proof: Let us assume that √2 is rational number then we can write √2= a/b where a and b are co-prime. √2 = π‘Ž /𝑏 (𝑏 β‰  0) squaring on both sides 2 = π‘Ž 2 / 𝑏 2 2 𝑏 2 = π‘Ž 2 . Here 2 divides π‘Ž 2 , so it also divides π‘Ž . So we can write a=2c for some integer c. Substituting for π‘Ž we get 2𝑏 2 = 4c 2 that is 𝑏 2 = 2c 2 . Here 2 divides 𝑏 2 , so it also divides 𝑏 .This creates a contradiction that a and Β b have no common factors other than 1. This contradicts to our wrong assumption. So we conclude that √2 is a irrational number. Β 
Tags