Class 11 Chapter 5 Complex Numbers and Quadratic Equations Lecture_1.pdf

PranavSharma468735 177 views 52 slides Jul 01, 2023
Slide 1
Slide 1 of 52
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52

About This Presentation

#class_11 #JEE #complex_numbers
Class 11 Chapter 5 Complex Numbers and Quadratic Equations Lecture 1
#iota #modulus #sum #difference #multiplication #conjugate
#class_11
#class_11_math
#class_11_maths
#Mathematics_Online_Lectures
#Maths_Learning_Centre_Jalandhar


Slide Content

Dr. Pranav Sharma
Maths Learning Centre. Jalandhar.

Complex Numbers and Quadratic Equations

IMAGINARY NUMBERS: if the square of a given number is negative then such a
number is called an imaginary number.

vu, V=2, etc, are imaginary numbers.

we denote \—T by the Greek letter Lota "Y, which is transliterated as “2.

Thus, V—4 = 2i, V—9 = 3i and V-5 = iv5, eto.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

POWERS OF i

y

xi=(-1)xi=-i;
(-1) x (-1) =1

i

Thus, we have i = 1,1 = 4,2 = 1,8
Let us consider i”, where n is a positive integer and n > 4.
On dividing n by 4, let the quotient be m and the remainder ber. Then,
n=4m+r, where 0 <r < 4.

in = ¡Mmtr — ¡tm y jr = a xi =i. [it=1]

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

(i) 198 = ¡22442 — a)” xi=i=-1 [it=]]

Ba nus a 2 2 u

(P= en) -1. 14% = 1 mad? =-11
2 ¡2

22 998 _ 1 A E; A 21000 _ (;4 250 _

Gi) i > == 3=-1 [00 = (it) =1

4 L { ¡4 —

(iv) i AE [=1]

WW = 12243 = (4)? x B Lx (DE 1. [8 =1]

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

s 3 alas Mal
M?S PRES y y = Y ALT X

(745 =i+ Ci = 0.

(VD) FEES EE I = M1 + TF FE)
=i"(1+i-1-i) = (fx 0) = 0. [2 =-1and8 =- il

(ix) ¿107 E j112 ste i117 di i122 = 4071 = iD + ¿10 de is)
=f (Lot titi)
=07(14+14824+8)14=1,=1000 2 = 1]
= 0744 i-1-0=(07x0)=0.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

(x) ar a4 0tx (141k) sa 4 ota otf =

=(1+D4-D04= (1-2) = 41 -(-1)}* = 24 = 16.

Ano 2
Show that{i + E) } = —4.
ı
5
we have 123 = i4*5+3) = (10 x 8 = 1 x (ED = —i Li = 1 and BP =-i]

NS | TE = 5 el a 3

() =p pe * pa 2=3= il = ind = 1
129?

{ee +(3) } = (ic DD = 42-41) =

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

O
simplif 020 (Ei) (4 vi 4 + 5-9 3/-16

o 20 (4) -(-2xi)xı
(ti) aV-4+5Y-9 = 31-16 = (4 x 2i) + (5x 30) + (8 X 4i)
= (8i+ 15i - 12i) = (11)i.

4n+3

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Show that (-V=1) =i, wheren is a positive integer.
4n+3
(=D = (93 = (y x (D = (D x (-B) = xd =k
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Show that the sum (1+ 1? + it +--+ 2") is 0 when nis odd andt whenn is

even.

LeS=14+P4 1404127

This is clearly a GP having (n + 1) terms with a= Land r = ran

all- +) 1x (1 = (2 (1-2 (1-0)
(ine ntré, alander 2) Math Legs Cen 2

2a — 1) = 0, when n is odd

S=

za +1) = 1, when nis even.

For any two real numbers a and b, the result Va x Vb = Vab is true only when at

least one of the given numbers is either zero or positive.
Thus, V-2 x V-3 = /(-2) x (23) = V6 is wrong.
In fact, V—2 x V-3 = (iv2)(iv3) = 12 x V6 = -V6.

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

explain the fallacy: 1 = GX) = VI x V=1 = JED) X CD SVT = 1.
we know that for any real numbers a and b, Va x Vb = Vab is true only when at
least one of a ana b is either O or positive.

=1 x V-1 # J(-1) xX CD.

(0, V=25 x V=49 = (Si) (7i) = (35 x #7) = 35 x (+1) =-35.

(it) V=36 x V16 = (6i) x 4 = 24i.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Find the value of Di (+ i+) (where, i =V=1)
43. 5 =

Dieters) =) e+ Yet = G40) + (2 +0) = 1-1
ni net n=1

Find thevalue of Daeg im (where, i = V—1).
nlis divisible by 4, Vn > 4.
eg LM = 9 + 104 104. oF times = 97 (6)
oe oar o a + rt = 104 EL 12 4 18! +97 Thom ea (01
SPA PA E 97 111 1-097 95401

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Show that the polynomial xP + x44+4 + x4rt? + x4843 is divisible by x? + x? +
x +1, where p, g,7T,S EN.
Let f(x) = x4P + xt4+1 À aar+2 ae x4s+3
and x8 + x2 + x +1 = (x? + 1)(x +1) = (x + (x — D (x + 1), where i = V-1
Now, f (i) =P + (441 + rt 4 i443 = 141418244 = 0 [sum of four
consecutive powers of iis zerol

fo 5 (Dr ES (yt + (SS) lila E (EE)

=1+(-0'+ (i? + (-)3 =1-i-1+i=0
and f(—1). = DP EDAD E

=1-1+1-1=0

Hence, by division theorem, f(x) is divisible by x? +x? + x +1.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

COMPLEX NUMBERS The numbers of the form (a + ib), where a and b are real
numbers andi = \—1, are known as complex numbers.
The set of all complex numbers is denoted by C.
C = {(a+ ib): a,b € R}.
Each of the numbers (5 + Bi), (—3 + V2i) and E - : i) is a complex number.

For a complex number, z = (a + ib) , we have
a =real part of Z, written as Re (z)
and b = imaginary part ofz, written as Im (z).

(1) fz = (5 + 91) then Re (z) = 5 and Im (z) = 9.
(ú) ¡pz = (31) then Re (2) == ana Im (2) = -3.

(i) pz = (-7 +51) then Re (2) = -7 and Im (7) =}.

8

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

PURELY REAL AND PURELY IMAGINARY NUMBERS

A complex number z is said to be

() purely real, if Im (z) = 0,

(it) purely imaginary, if Re (z) =0.

Thus, each of the numbers 2, —7, V3 is purely real.

And, each of the numbers 2i, (v3i), E i) is purely imaginary.

CONJUGATE OF A COMPLEX NUMBER
Conjugate of a complex number Z = (a + ib) is defined as,Z = (a—ib).

(0) (3 + 85) = (3-81) (i) (-6 — 28) = (-6 + 21) (it) -3 = -3.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Representation of conjugate

$
Imaginary axis =
Pe) 8
o
, ©
D 3
=
¡0 a ®
> Real =
0 0 E
b axis =
3
SM
+
QZ 8
2 ó
=
5
o
=
®
3
=
=
oO
n
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

MODULUS OF A COMPLEX NUMBER
Modulus of a complex number Z = (a+ ib) , denoted by |z\, és defined as

|z| = Ya? + b2.
() Hz = (2 +31) then |z| = /22 + 32 = V13.
(i) tfz = (-5 - 4i) then |z| = (52 + 4? = VAL.

EQUALITY OF COMPLEX NUMBERS
tf Zy = 01 + iby and zz = a2 + ib, then Z1 = 22 S 41 = Az and by = bp.

if2y + (3x —y)i = (5 —2i), find the values of x andy.
equating the real and imaginary parts, we get 2y + Ge —H)i = (5-21)
2y = Sand 3x-y = 72 ey =Sand3x-3=-2eyasandx as

He x=tandy=2
nee, = ga y

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

SUM AND DIFFERENCE OF COMPLEX NUMBERS
(fay = (aı + iby) andz, = (a, + ib) then we define.
( 21 + 22 = (ay + az) + ¿(b, + bz)

(2) 2 — 22 = (a, — az) + i(by — bp).

(1) £21 = (3 + 58) and 22 = (-5 + 21) then
Z1 +22 = {34+ (-5)} +5 +2}= (-2+70)
and Zi — Z2 = {3—(-5)}+i(5 — 2) = (8 +30.

(ti) tf zı = (-6 — Zi) and 22 = (—3 — 5i) then
Z1 +22 = {(-6) + (-3)} + i{(-2) + (-5)} = (-9- 7H)
and Za — Z2 = {-6 — (-3)} + i{(-2) - (-5)} = (-3 +30.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

(t) Re (zy +22) = Re (21) + Re (zz) and
Im (zı +22) = Im (zı) + Im (2).

(it) Re (zy — 22) = Re (z1) — Re (zz) and
Im (zı — Z2) = Im (z1) — Im(z2) .

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

PROPERTIES OF ADDITION OF COMPLEX NUMBERS
() CLOSURE PROPERTY: The sum of two complex numbers is always à complex
number.
Let za = (ay + iby) and z, = (az + ib,) be amy two complex numbers.
Then, Z1 + Zz = (ay + iby) + (az + ib,)
(ay + az) + ¿(by + bz) , which is a complex number.
Thus, tf Z1 and zz are any two complex numbers then (z1 + z2) is also a complex
number.
(i) COMMUTATIVE LAW: For any two complex numbers Zı and Z2, prove that
Z1 +22 = 22 +21.
Let zı = (a, + iby) and zZ, = (az + ib), where ay, Az, by, bz are real numbers.
Z1 +22 = (a, + iby) + (a, + ib)

= (ay + az) + i(by + b2)

= (az + ay) + ¿(b, + by) [oy commutative Law of addition in R]
= (a, + ib2) + (ay + iby) = zZ, +24.

Thus, Z4 + Zz = Zz + 24 for all 24, 22 E C.
Hence, addition of complex numbers is commutative.

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

(tit) ASSOCIATIVE LAW: For any complex numbers 24, Z2 ana Z3, prove that
(Z1 +22) + 23 = Z1 + (22 + 23).
Let Z = (ay + iby), 22 = (az + ib) and z3 = (az + ibz) , where ay, Az, Az and
bi, bz, b3 are all real numbers.
(21 + 22) + 23 = {(aı + iby) + (az + ib2)} + (az + ibz)

= {(aı + az) + ¿(by + b2)} + (az + ibs)

= ((a, + az) + az) + i{(bı + bz) + b3)

= [ay + (a, + a3)) + ify + (b2 + b3}

Toy assoctative Law of addition in R]
= (a, + iby) + {(az + a3) + ¿(b, + b3))
= (a, + iby) + {(a2 + ibz) + (az + ib3))
= Z1 + (22 +23).

(21 + 22) + 23 = Z + (22 +23) for all z1, 22, Z3 E C. Hence, addition of complex
numbers is associative.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

(iv) EXISTENCE OF ADDITIVE IDENTITY

For any complex number Zz, prove that Z+0=0+2=2.

Let z = (a + ib) and we may write, 0 = (0 +10). Then,
z+0=(a+ib)+(0+10) = (a+0)+i(b +0) = (a+ ib)

and 0 + z = (0 + i0) + (a+ib) =(04+a)+i(0+b)= (a+ ib).z +0 = 0 +

z = 2 for all values of x € C.

Thus, 0 ts the additive identity for complex numbers.

(v) EXISTENCE OF ADDITIVE INVERSE
For every complex number, prove that z + (—z) = (-z)+z=0.
Let z = (a+ ib) . Then, (—z) = a) + i(-b).
z+(-z) = (a+ ib) + {(-a) + i(-b)} = {a+ (-a)} + i{b + (-b)} = (0+ i0).
Similarly, (-2) +z = (0+ i0) = 0.
Hence, z+(-2) =(-2) +z= 0.
Thus, every complex number z has (=2) as tts additive inverse.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

MULTIPLICATION OF COMPLEX NUMBERS
Let zy = (aı + iby) and z, = (az + ib2) . Then, we define
Z122 = (a, + iby) (az + ib,) = (ayaz — by bz) + i(aybz + bıa,).
Z1Z2 = {Re (21): Re (zz) — Im (2) - Im (z2)}
+i{ Re (zı): Im (zz) + Re (zz) - Im (z:1)}.
() Let zy = (3 + 28) and z, = (5 + 4). Then,
2122 =((3X5)-(2x 4)} +4UBXHN+EQX5)}
= (15 — 8) + ¿(12 + 10) = (7+ 22i).
(it) Let zy = (-2 + 38) and z2 = (7 — 51). Then,
2422 = {@2)*% 7 =3 x (5) FHC2YX (57 +3 x7}
= (-144+15)+i(10+ 21) = (1 + 31i).

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

PROPERTIES OF MULTIPLICATION OF COMPLEX NUMBERS
() CLOSURE PROPERTY The product of two complex numbers is always a complex
number.
Let zı = (ay + iby) and z, = (az + ib,) be any two complex numbers. Then, ay,
az and by, ba are real numbers.

Z1Z2 = (ay + iby)(az + ib2)
= (a, a, — by bz) + i(aybz + by az) , which is a complex number. Thus, the product
of two complex numbers is always a complex number.

(tt) COMMUTATIVE LAW: For any two complex numbers Zı and Z2, prove that
Z122 = 222.
Let zı = (a, + ibi)andz, = (az + ib2) . Then,
2122 = (ay + iby)(a, + ibz) = (asa, — byb2) + i(a1b2 + by a2)
= (aa, — b2b1) + i(bza1 + azb,) Loy commutativity of multiplication on R]
= (az + ib,)(aı + iby) = 7274.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

(iii) ASSOCIATIVE LAW: For any three complex numbers 24,22 and 23, prove that
(Z122)23 = Z1(2223).
Let zı = (ay + iby), 22 = (az + ibz) and z3 = (az + ibz) be any three complex
numbers. Then 44, 42, az and by, ba, bz are all real numbers.
(Z122)Z3 = {(aı + ibı)(a, + ibz)}(a3 + ibs)
= {(a1az — by bz) + i(a,b, + byaz)}(az + ib3)
= {(a1az — bıb,)az — (a1b, + b,a,)b3)
+if(aza, — b1b2)b3 + (a1b2 + b1a,)a3)
= (a, (azaz — by b3) — by(azb3 + ba3)}
+i(a,(azb3 + a3b2) + bi(azaz — byb3)}
= (a, + ibyY(azaz — b2b3) + i(azbz + a3bz)}
= (as + iby){(az2 + iby)(az + ib3)) = z1(2223) .
Thus, (2122)23 = 21 (2223) for all z1, 22, 23 EC.
Hence, multiplication of complex numbers is associative.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

(iv) EXISTENCE OF MULTIPLICATIVE IDENTITY
The complex number (1 + 10) is the multiplicative identity inc.
Let z= (a+ ib). Then,
zx1=(a+ib)(1+i0) = {(a x 1) — (bx 0)} + i{(a x 0) + (bx 1)}
= (a+ ib) =z.
Similarly, 1X 2=2
Thus, (2x1) = (1 z) =z forallze C.
Hence, the complex number 1 = (1 + i0) is the multiplicative identity.

(V) EXISTENCE OF MULTIPLICATIVE INVERSE Let z = (a+ ib) + 0. Then,
care 1 2 1 the ine Le Eh)
z (a+ib) (a+ib) (a-ib) (a*+b?)
Clearly, z X zl=zlxz=1
Thus, every z = (a+ ib) has its multiplicative inverse, given by

1_ (a-ib) _ =

zZ

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

z 71 =- = = —
z (a?+b2) |z/
zz = (2/7
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Remember: 271 = a
Z

z= (a+ ib) >Z = (a- ib) and |z|? = (a? +b”).

: u PA (a — ib)
z=(a+tib)>z SE @+b)

(vi) DISTRIBUTIVE LAWS: For complex numbers 24, Z2, Z3, prove that
Zi: (22 +23) = ZıZ2 + 2123. (24 +22): Z3 = 2423 + 2223.
Leza = (ay + iby), 22 = (az + ibz) and 23 = (az + ibs) be any three complex
numbers. Then, Ay, Az, Az and by, bz, bs are real numbers.
Z1 * (22 + Z3) = (ay + ib,)[(a + ib) + (az + ibz)]
= (ay +ib1)[(az + az) + i(b2 + b3)]
= {a;(az + a3) — by (bz + b3)) + i{a1(b2 + b3) + by (az + a3)}
= {(a1az — bıbz) + i(aybz + b1az)} + {(a1a3 — by b3) + i(a1b3 + b1a3)}
= Z122 + 2123:

Thus, 24(Z2 + Z3) = 2122 + 2123 for all Z1, Zz, 23 € C.
Similarly, we caw prove that (21 + 22)Z3 = 2423 + 2223.

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

The complex numbers do not possess the property of order,
(a + ib) > or < (c + id) is not defined .

A real number a can be written as a + i - 0. Therefore, every
real number can be considered as a complex number, whose imaginary part is zero
NCWcICQCRCC

tf Z1 and Za are complex numbers, then zi + 23 = 0 does not imply zı = Z2 = 0.
For example, 214 = 1 + iand z2 = 1—idHere, Z1 # 0,22 #0

But

wi+2=(1+07+0-0% =14+24+2i414+7?-21=2427

Il
N
|
N
Il
o

However, tf product of two complex numbers ts zero, then at Least one of them must be
Zero.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

DIVISION OF TWO COMPLEX NUMBERS

<
Let Z1 and Zz be complex numbers such that zz + 0. Then, a =2Z1: A = 21237. 2
=
Find, when zı = (6 + 3i) and zz = (3-1). =
2 ©
z =
We have = Su. 3
_1 _ 22 _@)_ (8+) _ Bt

Now, 22° = 1,12 32 Gn 10° =
Zi a . B+) (6+30(3+1) =;
— = 24:25 >= (64+3i)- = eamingcentre; st 10)
Z 1° ( ET 10 3
15+15i 15(1+i) 3(14+0 =
= + = % [9]
10 10 2 à
=
5
o
=
®
3
=
5
oO
a

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

SOME IDENTITIES ON COMPLEX NUMBERS
For any complex numbers Zı and 22, prove that:
() (24 + 22)? = 29 + 23 + 22422
(1) (z1 — 22)? = 25 + 23 - 2212,
(ii) (zi = 23) = (21 + 22)(Zı — 22)
(iv) (24 +22)? = 23 +23 + 32122(Zı + 22)
Y (1 - 22)” = 24 - 23 - 32122(21 — 22)
() (z1 + 22)? = (21 + 22)(Zı + 22)
= (21 + 22)z1 + (21 + 22)22 [by distributive Law]
= 27 + 2221 + 2122 +25 [by distributive Law]
= 22 + 22422 + 22 [2224 = 2122]
= zt + = + 22122.
(za +22)? = 23 + 78 + 22420.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

(1) Gr = 22)? = (21 = 22) (@1 = 22)
= (21 — Z2)Z1 — (Zı — Z2)Z2 [by distributive Law]
= 2} - 2224 - 2422 + 23 [by distributive Law]
= 29 — 22127 + 23 [2221 = 2122]
= 24 + 23 — 22425.
(21-22? = 23 + 23 — 22422.

(it) RAS = (2, + 2)(24 — 22)
= (24 + 22)21 — (21 + 22)22 Loy distributive Law]
= Zi + 2221 — 2422 — z3 [by distributive Law]

= (zi — z3) = LHS.[z2z, = 2422]

(24 = 23) = (41 +22) = 22).

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

(1) (a +22)9 = (y+ 22)? (21 +22)

= (24 + 23 + 2212,)(Z1 + 22) Iexpanding (21 + 22)?1

= (23 + iz + 22122)Z1 Al (23 a 2 = a 22422)Z2 Toy distributive Law]
= 2 + 2321 ee 22225 + Zz se Zz == 22423

= 23 + 23+ 32222 + 32122 = 23 + 2} + 32122 (zı +22).

(Za +22)-= 25 +23 + 32122(21 + 22).

(v) LHS = (zı — 22)?

= (21 2221 - 22) = (25 - 22122 +25) (21 — 22)
= (27 — 2212, + 22 me E — 22122 + 25)22

= zt = 22222 + zizi - zz; + 22123 = 2

= Zi — 3242, + 37173 — z3 = RHS.

This may be written as (24 — 22)° = 24 — 23 — 32122(21 — 22).

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Simplify

(0) 3(6 + 61) + i(6 + 61) = 18 + 181 + Gi + 61? = 18 + 24i — 6 = 12 + 241.

(i) 1-H -(-3+6i) =1-i+3-6i=4—- Ti.

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Express (=V3 + V=2)(2V3 = i) in the form (a+ ib):

we have (—V3 + V—2)(2v3 — i) = (-V3 + iV2)(2V3 — i)
= —6 + iv3 + 2V6i- v2i?
= (-6 + V2) + V3(1 + 2v2)i.

Express each of the following in the form (a + ib):
© (3 + V=5)(3 — V=5) = (3+ v5i)@ - vBi) = (3? - (v51)”)
= (9- 512) = (9+5) = 14 +01.

(i) (2 + V-3)(-3 + 2V-3) = (-2 + v3i)(-3 + 2431)
= (6 - 4/31 - 3V3i+ 62) = —7V3i = 0 — 7V3i.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

(it) (2 +30? = (-2)? + GH? +2 x (22) x 3i
= (44 98? - 12i) = (4-9=12i) = (-5-12i).

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Prove that (1 — i)* =-4,
(4-4 = (1-8? x (1-1)? = (14+ # - 2) x (1+ # -2i)
CEQ 4 = 4 x (1) ea? 244]

Express (2 + 303 in the form (a + ib).
we know that (24 + 22)? = 25 + z +3z,22(21 + 22).

(2.4. 303 = 23 + (303 4+3.x2 x 3i x (24,31) = 8 +278 + 361+ 547
= (8 —27i + 36i — 54) = (-46 + 91)

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Express (3 — Si)? in the form (a + ib) .
We know that (zy — 22)? = zi — 23 — 32122(zı — 22).

(3 — 50° = 33 — (503 — 3 x3 x 5ix (3 — 5H = 27 — 12513 — 135i + 2251?
= (27 + 125i — 135i — 225) = (-198 — 101).

ıfz = (V2-V-3), find Re (2), Im (2),z and |z].
z= v2 -iv3.
Re (z) = v2, Im (z) = -v3, Z= (v2 + iv3)
and 1212 = {(v2)° + (-v3)'} = @+3) =5 > 121 = vB.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

write down the modulus of.
() Let z = 449-3. Then, z = 4 + iv3.
æ
Iz1? = {(4)? + (v3) } = (16 +3) = 19 > [zl = 19.

(i) Let z = 2 —5i. Then,
lal? = {2? + (-5)?} = (4 + 25) = 29 > |7] = V29.

(ii) Let z = 0 — i. Then,
Il? = {07 + (-1)?} = (0+ 1) =1> [7] =V1=1.

(iv) Let z = (-1 + 31)?. Then,
z= (-1) + (31)? +2 x (—1) x 3i = (-8- 61).
11? = (58)? + (-6)?} = (64 + 36) = 100 = 121 = V100 = 10.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Write down the conjugate of each of the following:
(1) Letz = (—5 + i) . Then, Zz = (—5 — i)

(ti) Let z = —6 — iV3. Then, Z = (—6 — iv3).

(ti) Lez= B =-i=0-i Then, z=i

(iv) Letz = (44 50? = (4)? + (50? +2x4x5i
= (16 — 25 + 408) = (-9 + 401).
Z = (—9 — 408).

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Find the multiplicative inverse of each of the following:
(i) Lez = (V5 +3i). then, Z=(V5- 31) and

2_ 2 E _ 1-2 _ 5-3i)_(v5_3,
Iz? = (v5) + 32 = (5 +9) = 14. esa = (8-41).

(it) Leez=4-=3i Then, Z=(4-3i) =(4+ 30) and
1212 = {(4)? + (—3)?} = (16 +9) = 25.

= z 4+3i 4 3.
z1= 7 =! 2= (5 xi).
Izl 25 25

(ile w= BES)? (NHL — 6i) = HO HIS 6) = (28 61):
Z = (-8 — 6i) = (-8 + 6i)
and |z|? = {(-8)? + (-6)2} = (64 + 36) = 100.

= E = SHS 6 )=(2 3 i)
e ak? 100 — 100 * 100! ~ 25 ' 50! :

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

(ty) Let z = (0 — i). Then,

Z=(-f =iand a?=/®+-1%=1. wt=Zatai

Express each of the following in the form (a + ib) :

»Maiths Laark Garde Ar (CE) _ Gdns bio tante
On am an an icon 2 2 — (ae)
(6) (-1+ van)” y cen, O A

m= 2155 (-1-v3i) (-1+V3i)(-1-v3i) (-1)2-(v3i)”

(13 _ C1 ee

(1334) 4 a 4

u SAVED (BZ) ANZ) | (SV ZO (14 vai) = Eat
(ii) 1-Y2i (1-v2i) = (1+v2i) (1-2i2) = (1 + 221).

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

(Y) ( La Bn) Eo L (étre) Ey 2 445), (6-20)

1+2i 1+3i (1+2i)(1-i) 1+3i (3+i) (1431)
_ (4+5i)(3-2i) _ (12+10)+(15-8)i _ (22+7i)
~ (+)(0+3) ~~ (3-3)+(91+) 108 i
er (7i2+22i) =7+22i _ e view i) =] E 7 Cer i)
1012 -10 10 10 10 5

Reduce & = =) to the form (a + ib) and hence find its modulus.

OS ati IN a t0?+ G0? _ xix Mail,
Lez = a i “aan a 27
Thus, z=0+2i> |z| = 02 +2? = V4=2.
Hence, Z= 0+ 2iand |z| = 2.
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

(a + ib) then show that (a? + b?) = 1.

vie TH _ (140) =o) =(4 i i)
va “Viel Je VE drum

del fi? A à
onan (bs 5)=19 a? +b?) =1.
la+ ib? =(=5) +(5) = +2 ( )
Hence, (a? + pb?) = 1.

- RR ay, (ata
Find the least positive integerm for which (5) =1.

1+i) (Ati) Ati) at)? _ (1+r2i+i?) 2i_ 5
we have G = 2 Csiro, Gitfhdh@-@ — 2Maths earn
1+i\™
( ) =1=i"=1
1-1

And, we know that 4 is the least positive integer such that it = 1 and therefore) m =
4

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Separate E —{i into real and imaginary parts and hence find its modulus.
_ (3H _ (340) _ Gti) _ GD +i)
ern (=A) u a) @-) (2-D 7 (2+)

> G+D(2+) (6+i2)+45i __ 5+Si u
~ 2-O(2+i) A-2) W--D}

al re

Hence, z= (1+ i) and |z| = V2.

=(1+1.

V5+12i+V5-1 a P m a
Reduce f era si) © the form (a + ib) and hence find its conjugate.
we have
CoVS¥12i+V5=12i _ (V5+12i+V5-12i) © (VS+12i4V5-121)
~ ¥5+12i-V5-12i (v5+12i-V5-12i) © (V5+12i+V5-12i)
WS REYS-12) _ (5+12+6-12+2,/6)2- 1202
o (5+120=(5-120 244
— 10+2V25+144 _ 10+2V169 _ (10+2x13) _ 36 _3_3_1_ Si _ _3;
u 24i 24i 24 MH id ii 22 2”
c = = .
Hence, Z = (0-32) and Z = (0-21) = (0+2i).
à 2 2
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

(f(a + iy)/3 = (a+ ib) then prove that:
+7 = 4(a? - b?) (a) 2-7 = -2(a? + b?)
we have (x + int = (a+ 2 >(x+iy) = (a+ ib)?

> (x+iy) = a? + ¿Bb? + 3iab(a + ib)

= a? — ib? + 3a?bi — 3ab? = (a? — 3ab?) + i(3a?b — b?)

>x=.a? — 3ab? andy = 3a?b — b? Ion equating real and imaginary parts
separately]
> = = (a? - 3b?) and a = (3a? - b?)
> (4 x E - 1) and (= Er a +22).
Hence, (t) F425 4(a? pm. b?) and (ti) -- == —2(a? + HT

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Lez be a complex number such thatz #1 and \2\ = 1. Then, prove that (=) is
purely imaginary. What will be your conclusion when z = 1?
Let z = (x + iy) be the given complex number such that z + 1 and |z| = 1. Then,
zl=1=> {25 x2+y=1x2+y2-1=0. (1)
= 2 ED _ xtiy-1 _ @-Driy Dd (DH)
2+1) (241) xtiy+l (x+1)tiy O (x+1)-iy {@+1)2+y2}
_ (@2-14y92)+{@&+1)y-@-Dy) _ (a+y2-1)+@yi _ { 2yi
u {@+122+y2} DY lar?
which is purely imaginary.
Particular Case When z = 1. ln this case, z=1=>x+iy=1
=>(x-1)+iy=0>%*-1=0,jy=0>%x=1,y=0.
z-1 _ (x+iy)-1 _ (x-1)+iy _ (1-1)+ix0 _0

using O1

210 GANA ADAM Y ARDOZ 0.
z-1,
Thus, z=1> za purely real.
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Find the real value of @ for which (
We have

) és purely real.

qe sin = = G+2isin 6) „ (1+2i sin 6) _ (3+2isin 8)(1+2i sin 0)
1-2isin@/ ~ (4—2isin@) (1+2isin6) — (1-412sin28)
_ (8-4sin?6)+i(6 sin 0+2 sin 8) _ (3-4sin?@)+i(8 sin 0)

(1+4sin20) (1+4sin20)
8 sin 9

(1+4sin20) ”
This happens only when 8sind=0 2 sind=0e0d0=n7,neEN.
Hence, the required value of O is ni, where n EN.

+2i sin O

—2isin O.

Now, ( ) will be purely real only when,

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Show that \1 — iX = 2° has no nonzero integral solution.
x x x
[1 —i[* = 2* = (2) = 2* 5 22 =2* 54 =1522=1=2°
22
> 2 =0>x=0.

Thus, x = 0 is the only solution of the given equation.
Hence, the given equation has no nonzero integral solution.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Solve forx and y:

(i) The given equation is (3x — 7) + 2iy = —5y + (5 + x)i.

Equating the real parts and the imaginary parts of the given equation separately,
we get

3x-7=-5yand2y=5+x >3x+5y=7andx—-2y=-5
>x=-1andy=2 Ion solving 3x + 5y = 7,x —2y =-—51.

Hence, x = —1 and y = 2.

(it) The given equation is (x + iy)(2—3i) =4+i
> (2x +3y) + i(2y — 3x) = 4+i = 2x + 3y = 4 and 2y —-3x = 1
Tequating real parts and imaginary parts separately]
> 2x +3y = 4 and —3x + 2y = 1
5 14 4 _ af _
> x= and y = 7, Lon solving 2x + 3y = 4, —-3x + 2y = 11.

5 14, + /
Hence, X = 3 and y = 3s the required solution.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

sait
y1_,_&@D G-ù , 0-D Es _
we have à it si an rote em”
EUA Dp Ge DSH) 1; de-D-10-D ya Delon) Ce
(9-12) 9-2) 10 10 o
> 3(x- 1) - i(x- 1) + 3(y — 1) + ¿(y — 1) = 10i
=> (3x-3+3y=3)+i(y=,1-—x+1) = 101
> (3x +3y — 6) + i(y — x) = 101
2 3(x+y—2) = 0 and y — x = 10
Tequating real parts and the imaginary parts separately]
=>xt+y—-2=0andy—x=10 >x+y=20d-x+y=10
= x = —4 and y = 6 [on solving x + y = 2, —x + y = 101.
Hence, X = 4 and y = 6 are the required values.

Find the E values of x and y for which E

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Find the complex number 2 for which |z +1] =z+2(1+i).
Let the required complex number bez = (x + iy) . Then,

Iz+1]=z2+2(1+0> |@wtiy)+1|=(«+iy) +2(11+H
> J@+D2?+y2 = (x +2) + iy +2)
> J@41? +y? = (42) and y+2=0

[equating real parts and imaginary parts separately]

y =-2 and. (e+ 1)* (2)? =@+ 2)
=>y=-2Zand Vx? +2x4+5 = (x42)
>y=-2 and (x? +2x +5) = (x + 2)?
D x2+2x+5 = x? +4x +4 and y = —-2
> 2x\= Landy =-2=x= Sand y =-2,

Hence, the required complex number is Z = G — 2i) .

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Solve the equation \z\ + z= (2 + à) for complex value of 2.
Let z = (x + iy) . Then,

J|+2=24i> [xt+iyl+(xtiy)=24i> [Ft ++ iy=(2+0
Sy + y2 +x=2andy=1

Tequating real parts and imaginary parts separately]
= y= Land Vx2+12#x=23 y = Land Vx2+1=(2-x)
= y = Land x2 +1 = (2-x)2 = y = 1 and x? +1 = x2 —- 4x +4
34x = Bandy = 15 x= and y = 1.

3 2, ir 3 4
Hence, Z = E + i) ts the desired solution.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Solve the equation 2+V2\z +1] + i = 0 for complex value of 2.
Let the required complex number be z = x + iy. Then, z+V2]z2+1|+i=0
> (x+iy) + V2](x+iy) +11+i=0

> x+v2{V@+D? + y?) + + Di=0

2 x + V2(JG+D7+y7)=0 and y +1=0
Tequating real parts and imaginary parts separately on both sides]

> y = Land V2{/G + D7+ CD} = o)
y=-1mndV2-/x2+2x +2 = (-x)
=> y =—Land 2 (x? +2x+2)=x?
>y=-1andx?+4x+4=0> (x +2)? = 0 and y = -1
3x+2= 0d y =-15 yx =-Zandy =—1.
Hence, the required complex number is z = (-2 —i).

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

(fa = 3 + 2i, prove that 2? — 62+ 13 = 0 and hence deduce that
323 —13z7+9z+65=0.

Z2=342i5 2-3=2i> (2-3)? = 47 > 2? -—6z4+13=0. ()

Thus, 22 — 6z+13 =0.

Now, 32? — 132? + 97 + 65 = 3z(z? — 6z + 13) + 5(2? — 6z + 13)

=(32x0)+(5x0)=0 [using (1.

Hence, 32° — 132? + 9z + 65 = O.

ifz = —5 +31, find the value of (z* + 923 + 262? — 147 + 8).
We havez = —5 + 3i => (2 + 5) = 31
> (z+5)? = 97 > 2? +10z+34=0. (i)
Now, z* + 9z3 + 267? — 14z + 8
= 22 (2? + 10z + 34) — z(z? + 10z + 34) + 2(z? + 10z + 34) — 60
= (22 x 0) — (2x0) + (2 x 0) — 60 = -60 [using (1.

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

(fa = 2 +i, prove that 23 +327 — 9z + 8 = (1+14i).
we have
z=2+i>z-2=i>(2-2?=i2=>2-424+5=0. (i)
23432? -92+8=z(2?°-42+5)+7(z?- 4245) +14z2- 27
= (zx 0) + (7 x 0) + 14z - 27 = (14z — 27) [using (1
= 14(2+i) —27 = (1+14i).
Hence, 2° +32? — 97 +8 = (1 + 14i).

$3139973UI[UOSINLUIYILN O) /LOIIANINOA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Tags