Class 11 Chapter 5 Complex Numbers and Quadratic Equations (Polar form ) Lecture 3.pdf

PranavSharma468735 92 views 31 slides Jul 01, 2023
Slide 1
Slide 1 of 31
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31

About This Presentation

#class_11 #JEE #complex_numbers
Class 11 Chapter 5 Complex Numbers and Quadratic Equations Lecture 3
#polar_form
#class_11
#class_11_math
#class_11_maths
#Mathematics_Online_Lectures
#Maths_Learning_Centre_Jalandhar


Slide Content

Dr. Pranav Sharma
Maths Learning Centre. Jalandhar.

POLAR REPRESENTATION OF COMPLEX NUMBERS

COMPLEX PLANE OR ARGAND PLANE

Let X'OX and YOY’ be the mutually perpendicular lines, known as the x-axis and
the y-axis respectively. The complex number (x + Ey) corresponds to the ordered pair
(x,y) and it can be represented by the point P(x, y) in the xy plane. The x-y plane
is known as the complex plane, or the Argand plane. x-axis is called the real axis
and y-axis is called the imaginary axis.

Note that every number on the X-axis is a real number, while each ow the y-axis is an
imaginary number.

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

The complex numbers represented

geometrically in the diagram are Ml “iS

(3+50, (=4+ 30; *B(-4, 3)

(5-30, (2-44), 20.2)

(6+ 0i), (—3 + Où),

(0+ 2i) and (0 —i), x’ F(3,0) |° E(6, 0) X
represented by the points H(0, -1)

*C(-5, +3) Ga)
y

A(3,5), B(-4,3), €(-5, -3),D(2, —4), E(6, 0), F(—3,0), G(0,2) and H(0,—1)
respectively.

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

POLAR FORM OF A COMPLEX NUMBER.

Let the complex number Z = x + iy be represented by the point P(x, y) in the complex
plane. Let ZXOP = 8 and |OP| =r > 0. Then,

P(r,0) are called the polar coordinates of P.

We call the origin O as pole.

x=rcos@andy=rsing

z=r(cos@+isin@). —————
This is called the polar form, ov trigonometric form,

or modulus-amplitude form, of Z.

Here, r = (x? + y? = |2| is called the modulus of Z.

And 6 is called the argument, or amplitude of 2,

written as arg (z), or amp(z) .

The value of O such that —1 < O < Wis called the principal argument of Z.

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

METHOD FOR FINDING THE PRINCIPAL ARGUMENT OF A COMPLE
NUMBER
Case1 When z = (x + iy) lies on one of the axes:

L When z is purely real.

In this case Z lies on the x-axis.

(6) tf Z lies on positive side of the x-axis then O = 0.
(ti) tf z lies on negative side of the x-axis then O = 7.

I. When z is purely imaginary.
In this case, z Lies on the y-axis.
( tf z lies onthe y-axis and above the x-axis then 0 = 5.

(tt) tf z lies ow the y-axis and below the x-axis then 8 = ER

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

Case 2 When g = (x+iy) aves not lie on any axes:

<
2 A Im (z) [e]
Step 1. Find the acute angle a given by tana = | a el 5
Step 2. Find the quadrant in which P(x,y) lies. >
Then, O = arg (Z) or amp(z) may be obtained as under. 8
Y Y 3
®
P

; a
4 Go|, > 2 E
Ki o M x x x ®
a
=.
wo u E
(1) When z lies in quad. I; (tt) When z lies in quad. II; then, O = =
then, 8 =a = arg(z) =a. (mw — a) > arg (z) = (r—a). ES
2
£
=
oO
un

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

— (1 —a)

y UW

(tit) When z lies in quad. li
then, 8 =(a— 1) or (w+ a)
> arg(z) = (a—-m)or(r+a).

Maths Learning Centre, Jalandhar

(tv) When z lies in quad. IV; then, 0 =
—a or 0 = (2m — a)
> arg (z) = -a or (2m — à).

https://sites.google.com/view/mathslearningcentre

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Polar form of z = x+iy is r(cos O + isin 0).

<
() r= 12 =/x2+y?. (&) tana =/?| = ze. 2
When —Tr < 0 < Tr, then 8 is the principal argument of z. S
Quad. in which z Lies arg (z) 8
l 0=a 3
u e=n-a a
ut 0=-(n-a) <
IV 0=-aor (20 - a) 2
When z is purely real; then, z lies on the X-axis. ES
(x>0>0=0)aud(x<0>0=1). >
5
When z is purely imaginary; then, z lies on the y-axis. 9
(y>0>0=5) and (y<0>0= 2). 2
®
3
=
=
&

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Convert each of the following complex numbers into polar form:
( 3 (i)—5 (Go) i (iv) —2i

(t) The given complex number is Z = 3 + Oi.
Let its polar form be z = r( cos 0 + isin 0).
Now, r = |z| = (32 + 02 = V9 =3.
Clearly, Z = 3 + Oi is represented by the point P(3,0) , which Lies on the positive
side of the x-axis.
arg(z)=0=0.
Thus, r = 3 and 0 =0.
Hence, the required polar form of z = 3 + Oiiss(cos0+isin0).

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

(ti) The given complex number is z = —5 + Oi.
Let its polar form be z = r( cos O + isin 0).
Now, r = |z| = (25)? + 02 = V25 = 5.
Clearly, Z = —5 + Oi is represented by the point P(—5, 0) , which lies on the
negative side of the x-axis.
arg(z)=1r>0=T.
Thus, r=50nd 8 = 1.
Hence, the required polar form of z = —5 + Oi ís 5 (cosr+isinr).

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

(tii) The given complex numberis z = 0+ i.

Let its polar form be z = r( cos O + isin 0).

Now, r = |z| = V02 +12 = 1.

Clearly, z = 0 + dis represented by the point P(0, 1) , which Lies on the y-axis and
above the x-axis.

( ) TT 0 T
=3> ==,

. arg (Z)=5 2

This. r= Land 0 =>

Hence, the required polar form of Z = 0+ Lis

Big gop TA y Eo a ges E
1. (cos = +isin =) te, (cos 2 +isin =).

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

(tv) The given complex number is z = 0 — Zi.

Let its polar form be z = r( cos O + isin 0).

Now, r = |z| = (0? + (—2)? = V4 = 2.

Clearly, z = (0 — 21) ts represented by the point P(0,—2), which lies on the y-axis
and below the x-axis.

( ) rn 8 TT
=— 0 -——

u arg (z 2 5

Thus, r= 2 and 0 ==.

Hence, the required polar form of z = 0 — 21 ís

z=2 { cos E +isin E Le., 2(cos E isin 3:

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

Find the modulus and argument of each of the complex numbers given below:
(91+ (ii) — V3 +i (49 -1-iV3

© Leez=14 i. Then, |z| = 12 + 12 = V2.

Let à be the acute angle given by

Im (z)
Re (z)

ike 1 Tw
=|71=1=a=,.

tan a =

Clearly, the point representing z= 1+ iis P(A, 1), which Lies in the first quadrant.

T
arg(z)=0=a=7.
Hence, |z| = V2 and arg (z) = a

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

2
(4) Let z = —V3 + i. Then, |z| = (53 +12%= 44 = 2, 3
=
Let a be the acute angle given by 2
o | Im (z) =] 1 1 1 E
an a= = = a=-. f
Re (2) 13 v3 6 8
Now, z = (—V3 + i) is represented by the point P(—V3, 1), which Lies in the second El
quadrant. a
(m=0=(r-0)=(n-5=% 3
arg (z) = @ = (n-a) =(nx- =) =—.

cn 6) 6 =
Hence, |z| = 2 and arg (z) = m 3
2
=
n
jo)
=
5
®
®
3
£
=
oO
un

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

> 2

(ús) Let z = -1 — iV3. Then, |z| = | (-1)? + (-V3) = V4 =2. $
Let a be the acute angle given by Ei
ld
m (z) -v3 TU ®
tana= Ip == 1=% a=3 a
Now, Z = (-1 = iv3) is represented by the point P(-1, -v3) , which lies in the 2
third quadrant. a
TE — 27 =
_ _ u _ Fe _ oo
arg (z)=@=(a n=(5 nm) => 5
Hence, |z| = 2 and arg (z) = = 3
2
5
jo)
=
5
®
®
3
£
o
un

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Convert the complex number (1 + iV3) into polar form:
The given complex number is z = (1 + iv3).
Let its polar form be z = r( cos 0 + isin 8).

Now, r = [xl = [12 + (V3) = V4 = 2.

Let a be the acute angle, given by
Im (z) V3 T
= = V3 =—,
Reel l1l LE
Clearly, the point representing z = (1+iV3)is P(1, V3) ‚which lies in the first
quadrant.

tana = |

arg (z) =@=a=-—.

ala

Thus, r = |z| = 2 and 8 = arg (2) = 5.

Hence, the required polar form of z = (1 + iV3) is 2 ( cos at isin 5) .

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Convert the complex number (2N3 — 2i) into polar form.
The given complex number is z = (2V3 — 2i).
Let its polar form be z = r( cos 6 + isin 8).

Now, r = |z| = „|(2V3)” + (22? = VI2 ¥4 = VI6 = 4.

Let a be the acute angle, given by

Im (z) | —2 | ER T
= a=-.

Re(z)| I2v3l V3 6

Clearly, the point representing z = (2V3 — 2i) is P(2V3,-2) „which lies in the

fourth quadrant.

tana =

—T
arg (Z)=0=-a=
Thus, r = |z| = 4 and O = arg (z) =<.

Hence, the required polar form of z = (2V3 — 21) is

4| cos (=) + ¿sin E = 4(cos = isin 2).

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Convert the complex number (=2 + 2iv3) into polar form.
The given complex number is z = (—2 + 2iv3) . Let its polar form be z =
r(cos 8 + i sin 8).

Now, r= [al = C2 + (2V8)" = VAT TZ = VIS = 4.

Let a be the acute angle, given by
Im (z 2v3 T
@|_ = 5 Seo
Re (z) —2 3
Clearly, the point representing z= (-2 + 2iV3) is P(-2,2V3) ; wnicn lies in the
second quadrant.

tana =

ar; @)=0=(n-a)=(n-2) ==

8 a ma = i gyi ge

Thus, r = |z| = 4 and 0 = =,
Hence, the required polar formás z = 4 ( cos = +isin =) €

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

(1470,
Convert ona Into polar form.
_ (470 _ (+7) _ (470 | G+4ù
ipa (2-1? : (4+12-4i) o (3-40 © (+40
¿M4 (1+7i)(3+4i) z ( 5+25i la E + i) .

(9+16) 25

Let its polar form bez = r( cos 8 + isin 8). Now, r = |z| = Y(-1)? + 12 = v2.
7

Im (2) E lala
Re (o) =1=a=:

Clearly, the point representing z = (-1+4 à) is P(—1,1) , which Lies in the second
quadrant.

Let @ be the acute angle, given by tana =

need = 8=(T-a)= (r-7
Thus, 1 = [71 = V2 and =
Hence, the required polar form is z = V2 ( cos = +isin =) .

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Convert the complex number on fen into polar form.

1 @)_ 4) _G-D_f1 1,
am an an zie 21).

Let tts ote JE bez = r(cos@+isin@).

Now, r = |z| = 4425 a4
2 u arg vz

Im (2)
Re (z)

Letz=

1 2.
af]

Clearly, the point representing z = G 2 i) is P E 3) ‚which Lies in the fourth

Let a be the acute angle, given by tana = i

T
ri

2 2
auadrant. arg(z)=0=-a=
Thus, 1 = || = 5 and 6 = E

Hence, the required polar form is

z= {cos (7) + sin (<<) a, (eos; - isin À)
cos isin (= ))}, Ue, (cos ¿—isin 7).

ua
E

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

Convert the complex ne into polar form.
(cos Fri sin 3)

_ G-1) _ G-1) _ 2-0
ar (cos 2+i sin) E an (1+/3)

2(i-1) „a= al (9,
"ara (1 —iv3) 2 u 2 a $

Let its polar form be z = r(cos O + isin 6).
Ea 2 = 2
Now, 1? = |7[2 = [en „use } =!-2=r=22.

4 4 4

Let a be the acute angle, given by

Im(),_,(/3+1) 2 6849. (+)

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

tana =| =] = =
Re (2) 2 *(V3-1) (3-1) ces
v3.
u (tan £+tan?) al: wm) Sn Sn
> tana = a tan Fan?) = tan +5) = MR, PS
Clearly, the point representing the given complex number is P (E ar Bet) ‚ which
lies in the first quadrant.
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

(2) =0 TE 51

= Ss = —>0=
PE a 12 12
Thus, r = |z| = V2 and 0 = 7.

Y har _ Sms
Hence, the required polar form is z = V2 ( cos > + isin =) .

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

Express the complex number (1. — i) in polar form.
The given complex number is Z = —1—i.

Let its polar form be z = r( cos 8 + i sin 0).

Now, r = |z| = ED? + (ED? = v2.
Let @ be the acute angle, given by

Im (z)
Re (z)
Clearly, the point representing the complex number Z = —1— its P(-1,-1), which
lies in the third quadrant.

arg (2) = @ = ~(n- a) =~ (n-T) =

t S| 1 E
ana — = = a==
= 4

Thus, 7 = |g) = V2 and 0 =

Hence, the required polar form of z = (—1 — i) is given by
= V2{ cos (=) +isin (=) Le, V2 (cos o isin =) A

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

Express the complex number (V3 — à) in polar form.
The given complex number is z = (—V3 — i).
Let its polar form be z = r( cos 0 + isin 8).

Now, r = |z| = (43) + (192 = v4 = 2.

; _ [Im (2)
Let a be the acute angle, given by tana = | RES logis mE

Clearly, the point representing the complex number z = (- V3 — a is CE -1) 3
which Lies in the third quadrant.

TC —57

arg(z)=09=-(n-a)= -(x-=) = ——

TT

T

thus, r = |z| = 2 and 0 =
Hence, the polar form of Z = a v3 — i) is given by

z= 2{cos (= )+isin (= =), Gex 2 (cos = — isin =).

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

142i,

Convert the complex number into polar form.

(142i) (+30) _ (1420430 _ —5+5i _ (1,1,
ae ar 10 7 ( 2+* i)
Let its polar form bez = r(cos 0 + isin 0).

cr YO E

Let a be the acute angle, given by tana=|

Let z =

Im (2)
Re (z)

pe EVEN
-(1/2)
. , -1,1.\, -11 et, JEAN
Clearly, the point representing z = E +3 li) is P E 2 3 , which Lies in the second
quadrant.

a
¡ISt5uez

TC Im
arg (z) = 0=(m-a=(n-7)=%
Thus, F = 171 ana =
1

; ha ose 3x, cn 37
Hence, the required polar form is z = Gl cos +isin =) 5

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Express the complex number sin = +i (1 — cos 5) in polar form.
a x
Let z = sin E+i(1- cos 2).
Let its polar form be z = r(cos 0 + isin 6) :
2

Now, r? = |z| = sin? 2+(1- cos 2) = (sin? =+cos 22) +1- 2 cos =

Sent =2 (1 cos 5) = Asin? = amsg2osimi,

5 10 10

Let a be the acute angle, given by
Im (z) 1- cos = 2sin?= =

land ”=|= = tan a=—
Re (2) sin= 2sin = cos E 10 10

tana = |

Clearly, the point representing Z lies in the first quadrant as x > 0 and y > 0.

=) are, =2sin = = Y
arg (z) =0=a=—. Thus, r 2 sin „and 10:

4 4 A nm ua i ov Tr
Hence, the required polar form is 2 sin 10 ( cos 5 + isin =) :

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Convert 4(-cos 300° + i sin 300°) into Cartesian form:
4( cos 300° + i sin 300°) = 4[ cos (360° — 60°) + i sin (360° — 60°)]
= 4[ cos (-60°) + i sin (-60°)]

= 4[ cos 60° = i sin 60°] =4 (1-54) = (2= 2443).

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

For any complex numbers 2,24 and 22 prove that:
() arg (z) = — arg (z)

(@ arg (2122) = arg (21) + arg (22)

(Gi) arg (2122) = arg (z1) — arg (22)

(6) arg (2) = arg (21) - arg (22)

() Leez = r(cos 6 + isin 0). Then, |z| = r and arg (z) = 6.
Now, Z=r(cos@+isin@) > z=rcos 0 + i(r sin 0)
> Z=rcos 0 —i(r sin 0) = r( cos 6 — isin 0) = r{ cos (—@) + i sin (-0))

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

> |z| = 7 and arg (2) = -0 = —arg(z).
Hence, arg (Z) = — arg (z).
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

(it) Let zy = 174 ( cos 0, +i sin 01) and z, =r2(cos 0, + i sin 0).
Then, |z,| = T1, arg (Z1) = 0 and 1,,| = 12, arg (22) = 02.
Z122 = r,(cos 6, + isin 6,) -r,( cos 8, + isin 02)
=rırz{(cos 6, cos 6, — sin 6, sin 02) + ¿(sin 0, cos 6, + cos 6, sin 0,)}
= rırz{ cos (0, + 02) + i sin (0, + 02))
> arg (2122) = (0, + 02) = arg (21) + arg (zz).

(tit) Let zı =r,(cos 0, + isin 04) and z, = r¿( cos 0), + ¿sin ,).
Then,

Z2 = T2 COS 02 + ı(r, sin 82) = r2 cos 0) — i(r, sin 82)

> Z2 = r2[ cos (-0,) + isin (-0,)}.
Z4Z2 = r,(cos 6, + isin 6) - r2{ cos (—@2) + isin (—@2)}
= r1r2( cos 6, + isin 6,)( cos (-0,) + i sin (-0,)}
= r¡r2[ cos {0} + (-0,)} + i sin {6, + (—O2)}]
= 1 112{ cos (01 — 62) + isin (0, — 62)).

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

(tv) Let zy =r,(cos 0; +isin 01) and z2 = r2(cos 67 + isin 0).
Then, |z,| = 71, |z,| = T2, arg (21) = 01 and arg (Zz) = 02.
Zı 14(cos@,+isin@,) (cos @2—isin 62)
Z2 T2(cos 02 +isin 0) (cos @,—isin 62)
ay { cos @- cos 0 — sin 6 - sin 0) + i( sin 0, : cos 62 — cos 0, sin 2)

(cos28;, + sin?62)

= (cos (0, — 62) + à sin (0, — 62)}
2

T2

> arg (#) = (0, - 62) = arg (21) - arg (22).
Hence, arg E) = arg (z 1) — arg (22).

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre

tf Zy and Zz are conjugate to each other, find the principal argument of (=21Z2) .
AS Z1 and Z2 are conjugate to each other L.e., Z2 = Zy, therefore, Z1Z2 = 2424 = Iz1l?
arg (—2122) = arg (—|z,|*) = arg [negative real numberl= nr

Let z be any non-zero complex number, then find the value of arg (z) + arg (2).
arg (z) + arg (Z) = arg (zZ)= arg (|z|*) = arg [positive real numberl= 0

SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA

Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre
Tags