(it) Let zy = 174 ( cos 0, +i sin 01) and z, =r2(cos 0, + i sin 0).
Then, |z,| = T1, arg (Z1) = 0 and 1,,| = 12, arg (22) = 02.
Z122 = r,(cos 6, + isin 6,) -r,( cos 8, + isin 02)
=rırz{(cos 6, cos 6, — sin 6, sin 02) + ¿(sin 0, cos 6, + cos 6, sin 0,)}
= rırz{ cos (0, + 02) + i sin (0, + 02))
> arg (2122) = (0, + 02) = arg (21) + arg (zz).
(tit) Let zı =r,(cos 0, + isin 04) and z, = r¿( cos 0), + ¿sin ,).
Then,
Z2 = T2 COS 02 + ı(r, sin 82) = r2 cos 0) — i(r, sin 82)
> Z2 = r2[ cos (-0,) + isin (-0,)}.
Z4Z2 = r,(cos 6, + isin 6) - r2{ cos (—@2) + isin (—@2)}
= r1r2( cos 6, + isin 6,)( cos (-0,) + i sin (-0,)}
= r¡r2[ cos {0} + (-0,)} + i sin {6, + (—O2)}]
= 1 112{ cos (01 — 62) + isin (0, — 62)).
SSEANPFTSULOSIIEWSYNEN&/WO9IBqnInoA
Maths Learning Centre, Jalandhar https: //sites.google.com/view/mathslearningcentre