Class 11_Chapter 9_Sequences and Series (Sum of special series) Lecture 12.pdf

PranavSharma468735 10 views 25 slides Aug 16, 2023
Slide 1
Slide 1 of 25
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25

About This Presentation

#class_11 #JEE #sequences #series
Class 11 Chapter 9 Sequences and Series_ Lecture 12
#special_series
#sum_of_first_n_natural_numbers
#sum_of_squares_of_first_n_natural_numbers
#sum_of_cube_of_first_n_natural_numbers
#class_11
#class_11_math
#class_11_maths
#Mathematics_Online_Lectures
#Maths_Le...


Slide Content

Dr. Pranav Sharma
Maths Learning Centre. Jalandhar.

Some Special Series

SUM OFFIRSTN NATURAL NUMBERS

Provetnat A+2+3 ++ +n) = En(n +1) 22, Ej le =Ím(n+D).
Consider the series (1+2+3+..+1n).

This is an arithmetic series in which a =1,d=1andl=n.

n 1 1
Sn = ZA +n) > Sy =Zn(n+ 1) Sn = 5 (a+ D}.

Hence, ear k= ¿nn +1).

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

SUM OF THE SQUARES OF FIRST N NATURAL NUMBERS
Prove that (1? + 22 +3? +--+n?) = En(n +1)(2n +1)

Le, Eat? =in(nt+1)(Qn+1).
LES, = 127 4+27 437 +--+ n?
Consider the identity: k3 — (k — 1)? = 3k? — 3k +1. (i)
Putting k=1,2,3, (n—1),n successively in (i), we get

13-03 =3-17-3-14+1;

23-13 =3-2?-3-24+1;
33-23=3.32-3-3+1
Mm-D3-(M-2 =3.(n-1)?-3:(n-1)+1;
n-—(m-D?=3.N2-3-n+1.

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Adding column wise, we get
(m3 - 03) =3(12+224+324+-+n2)-3(142+3+-+n)+n
ñ

sm =3: 10-304 1) +n |a+2+34 4m =3n(0+0)]
1
= 3 i
= a(S mt) ant En + D Zn Han +)
kA
= [ak] = 2 (2n3 + 3n? +n) = in(2n? + 3n +1) =in(nt 1)(2n +1).
Henee, Digi? = Én(n +1)(2n +1).

SEINWFTAULOSINEWSUNEN®/WO9sqnInoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

SUM OF THE CUBES OF FIRST N NATURAL NUMBER

Prove that (13 + 23 +33 + -+n?) = Ena + D} OR = Ena + D)

LaS. = 13 +23 433 tan.

Consider the identity: k* — (k - 1)? = 4k3 — 6k? +4k-1. (6)

Putting k = 1,2,3,(n—1),n successively in (i), we get
1+-0?=4:1°-6.1?+4:1=1
24-14=4-23-6-274+4-2-1
34 24=4.33-6-37+4-3-1

=

(n- 1)* — (n - 2)* -6-m-D?+4-(n-D)-1
n®-(n-1)*=4:n?-6-.n?+4:n-1.
Adding column wise, we get
(n* — 04) =4- {13 + 23 +33 +--+ 3} —6- (12 +27 4327 4-4 n2)
+4 -(14243+-+n)-(1+ 1+1+--to nterms)

a 4) 10)-0-) 10) +0 (4) =m

k=1 k=1 k=1

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

1 5 A ‘

>n*=4- ye —6-En(n+ DQ2n+1)+4-5nm+-n
k=1

CDR = Enr + 1)Qn +0 and E k = nn + 1)}

> 4. (De) =m ns Dœn +0 an nn
k=
n 5
> D e) => (n* + 2n? +n?) = i n?(n? +2n+1)= Enn+ D}
Eiai)= Ena + D} Le, (13 + 23 +33 +--+n3) = Ena + D}.

SEINWFTAULOSINEWSUNEN®/WO9sqnInoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

SUM OF THE CUBES OF FIRST n ODD NATURAL NUMBERS
Prove that [13 + 33 + 53 + --- (2n - 1)*] = n?(2n? - 1)
Le. YB4(2k — 1)? = n2(2n? - 1).
LaS, = 19 +334 5% 4---4+ (2n —1)$.
Then, Sn = Er-ı(2k - 1)? = YR_,(8k3 — 12k? + 6k — 1)
= 8(D hark?) - 12(Uh kk?) + 604 10 — n L1+41+to nterms =n]
=8-intn +1)? ~12-En(n + Dm +1) +6 Zum + 1)-n
= 2n?(n +1)? —2n(n+1)(2n+1)+3nm+1)-n
=n(n+1)-{2n(n+1)-2(2n+1)+3}-n
= n(n + 1)(2n? —2n+1)-n=n-{(n+1)(2n? -2n+1)-1)
= n(2n? - n) = n?(2n? -1).
{13 + 33 4+ 53 +--+ (2n—1)3} = n?(2n? - 1).

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

@ 14243 4--4+n) =3n(n+1) Le Oe) = En 1).
(i) (12 +22 432 4..+ n?) = ¿n(n +1)(2n +1)

Le, (Bike) = ¿nn + DON +1).
(i) (13 +23 +33 +--+n3) = Ent D} Le, (Chak) = Gain + vy
(6) {13 +33 +53 +--+ (2n— 1)3} = n?(2n? - 1)

Le, Di (2k - 1)3 = n?(2n? -1).

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Uf Si, Sz and S3 are the sums of first n natural numbers, their squares and their
cubes respectively then show that 983 = Sa(1 + 851).
We have

S¡=(1+2+3+-+)>5,=3n(n+1);
Sy = (17 +2? 43? 4+--4+n?) 3S, =in(n + 1)(2n+1);
and $3 = (17 +23 +39 42403) = =D?
983 =9 x ag Mint 1)2(2n + 1)? = nn 1)?(2n + 1)?
And, S3(1 + 85:) = In?(n +1)? -[1+8-Inn+1)}
= grin 1)?(4n? + 4n +1) = an2(n + 1)2(2n + 1)2
Hence, 983 = S$3(1+ 8S,).

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Find the sum ton terms of the series whose uth term isn(n +3).
we have, Ty = k(k + 3) = (k? + 3k).
sum to n terms ts given by

5,- n=) k? + 3k) = Zara)
uen DES Lien + 1) = AE DCR A) CRD) =

n(n+ 1)@n +1+9) =In(n+1)-2(n+5)=inn+1) m +5).
Hence, the required sum Is nn + 1)(n + 5).

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Find the sum ton terms of the series whose nth term is (2n = 1)?
we have, Ty = (2k — 1)? = (4k? — 4k +1).
sum to n terms is cane Y

= Dr } ue - 4k+1) = De D

L Maths. ringe =n]
=4-Inin+ D@n+D)-4-Inin+1)+n
2:
= zun + D(2n+1)-2n(n+1)+n
= 5 + {2n(n + 1)(2n + 1) - 6n(n + 1) + 3n)
= jinn + 1){2(2n + 1) — 6} +3n] => [4n(n + 1)(n — 1) + 3n]
SE 5 (4n? -n)= n(4n? -1).

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Find the sum ton terms of the series whose nth term is (n? + 2%). we have, Tr =
(12 +2").

n n

= Y ri= S02 +22 Y a

1 k=1 k=1

=|
it
a
=|
it

n(n + 1)(2n+1) + (2427 +23 4-42")

i 2
. y 2 = nn + DQn+1)
k=1

E 2(2"-1)
= nn + 1)(2n +1) + — @- 5

= Inn + 1)(2n+1)+2(2"-1).

12+2°?+..+2”isaGPl

SEINWFTAULOSINEWSUNEN®/WO9sqnInoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Sum the series 3 : 8 + 6 : 11 +9: 14 + ton terms.
we have Ty =(kth term of 3, 6, 9, ...) X (kth term of 2, 11, 14, ...)
= {3+ (k-1) x 3} x 18 +(k-—1) x 3} = 3k(3k + 5) = (9k? + 15k).

Sn = ) Ty = ) (9k? + 15k) 9 Ke) +15 4)
ens (¿no FDON+ 1) Yis: (¿no E 1}
= En(n + 1){(2n + 1) + 5} = 3n(n + 1)(n +3).
Hence, the required sum is 3n(n + 1)(n + 3).

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Sum the series1: 2+34+2°3-44+3-4-54++-ton terms.
wehave Ty =(kth term of 1, 2, 3, ...) X (kth term of 2, 3, 4, ...) x (kth term of 3,
4,5, ...)
={1+(k=1) x 1}4 (2+ (k-1) x1} (34 (k=1) x 1}
= ER E nie |

= Y ri = (eran + 21) à Jere de
ki fl
1

= qn im +1)2+3 ann + 1)(2n+1)+2 en 1)
VL = nj + D} ak =¿n(n+ DOR+D,

y pes Inn + Dye in(n + 1) {nn +4) 4 2@n 41) 49

= En(n+ 1)(n? + 5n +6) = En(n+ 1)(n + 2)(n +3).

SEINWFTAULOSINEWSUNEN®/WO9sqnInoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Find the sum of the series 1? + 3? + 5? + ton terms:
We have
Ty = kth term of (1? + 3? + 57 +)
= {1+ (k-1)x 2} = (2k-1)? = (4k? = 4k +1).
n n

Sn=) Te = ) (4K? - 4k +1)

k=1
=4 41? 4 01 k+(1+1+--ntímes)

1 1
=4:¿n(n+1)Qn + 1)-4:0n+1+n
=5 (2+ D(2n+1)- 6+ 1) +3) =F(4n? 1).
Hence, the required sum is (an? - 1).

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Find the sum 1? +(12 +2?) + (1? + 2? + 32) + tom terms.
We have
Ty, = (1? +2? +3? 4-442) = [hh ner: +1) = E +3k2 + i).

- a = E oye Durs da
k=1

k=1 k=1
171 2 1 1 Let
eg +7 zul + Dan + 1) + ee nd)

1 1 1
san +1? + TL 1)(2n +1) tort 1)

AC ED OR HDI LAB HAE (n +2).

wi.
Se
ai mil

SEINWFTAULOSINEWSUNEN®/WO9sqnInoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

1x2?+2x3?+....+nx(n+1)? _ 3n+5
12x24+22x3+-+n2x(n+1) 3n+1'

Prove that

we have

kth term of the wumerator = k(k + = (13 +/2k? + k) a

kth term of the denominator = k?(k + 1) = (k3 + k2).

CA AA k?)+ (The)
DETTES) Era 1)

In2(n+1)2+2-In(n+1) 2nt1)+3n(n+1)

LHS =

dn? (n+1)2+In(n+1)(2n+1)

sainyoaaul|UQsaewayie| @/woo'aqnynoA

b-2 27 n(n+1)(n+2)(3n+5) 12 nts) _
a” GET EE 12 n(n+1)(n+2)(3n+1) (Bn+1)
RHS.
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

1 1
eat (5x8) (8x11)

Find the sum of n terms of the series ==

we have Ti = (kth term of 2,5,8,. Ru term of 5,8,11,...)
L

4 1 1 1
~ +(-D)x3)x(5+(k-1)x3) (Bk-DGk+2) nece ~ alas
1 1 1

kTzlar) Gkr2)) ©
Putting k= 1,2,3,n successively in (i), we get
171 1 1/1 1
ne nr) ,
SE ee en
Ta G igs Tes (GES Een

Adding column wise, we get

1
that tr Tae = — | E

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Find the sum of n terms of thé series 5 + 11 +194+29 +41 ++
SOLUTION LES, = 5 +11+19+29 + --+T,4at+Tp
Sn = BUF 19 +0 4+ Tyo +Ta-ı+ Ta
Ow subtraction, we get
0 = 5 +16 + 8 + 10 + 12 + ---to (n — 1)terms] -T,
(n-Dx[2x6+(n-2)x2]
2

Ty = 5+
> T, =n? 4+3n+1.
Sn = Dhar Tr = Eta? + 3k 4 1) = 12430 kin

= nn +1)@n +1) +3x5n(nF1)+n=Fn(nt2)(n44).

Ta =5+(n—-1)(n+ 4)

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Find the sum of the firstn terms of the series 347 +13 + 21+31+»+"
LAS, =3+74+13+21+31++T, +7,
S = 3474 13421 4-4 5 ET a +7,

On subtraction, we get 0 = 3 +14 + 6 + 8 +10 +to (n —1)terms] -T,
ST, =3 +14 +648 + to (n—1) terms] = 3 + D x [2 x 4+ (n—2) x 2]
=3+n-Dn+2)=(n+n+1).
Sn = her Tie E (1? + 41) = Ei 2 + E + mn

L1+1+1+ to N terms = nl
=n(n+ 1)(2n+ 1) +5n(n+ D+n= En(n? +3n +5).

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Find the 50th term of the series 2+ 3 + 6+11+18+::
LS, =24+3+6+11+18+-+T, 1 +Tp
Again Sn =2+3+6+11+-+Tp 1 +Tp.
On subtracting, we get
0=2+114+3+5+7+to(n-— 1)terms] -T,
3T, =2+114+3+5+7+to(n-— 1) terms]

We)

=2+ -2x1+(n-2)x2]=(n-1)? +2.
> Tso = {(50 — 1)? + 2} = {(49)2 + 2} = (2401 + 2) = 2403.

SEINWFTAULOSINEWSUNEN®/WO9sqnInoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Find the sum of the series
(33 - 23) + (53 — 45) + (73 — 65) +... to
(à n terms (öl) 10 terms.
we have Ti = {(2k + 1)? — (2k)3}

= (8k3 + 1 + 6k(2k + 1) — 8k} = (12k? + 6k +1).
() sum to n terms is given by Sn = 12 Ek? + 6% ık +n

= 12 x En(n+1)2n+1) +6x5n(n + 1) +n
=2n(n+1)(2n+1)+3n(n+1)+n
=n(n+1)[4n+2+3]+n=n[(n+1)(4n+5)+1]
= n(4n? + 9n + 6) = (4n? + 9n? + 6n).
(ii), Sum to 10 terms is given by
S10 = 10 x [4 x 10? +9 x 10 + 6] = 4960.

SEINWFTAULOSINEWSUNEN®/WO9sqnInoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

e Bn gara? | 13423433
Find the sum of the series + De

Let Ty be the nth term of the given series. Then,

++ upto n terms.

2
ne(aterade3taacend)r_ Bi NatGe-sgärnia
M (14345+.+@n-D)) ¿(42m D) 4004
Let Sy denotes the sum of n terms of the given series. Then,

(n? + 2n+1)

dr 1
5,221; = que +2n+1)= ¿Er + 2En + £1)
1 E +1)(2n+1) 2n(n+1) }
TER + +n

SEINWFTAULOSINEWSUNEN®/WO9sqnInoA

4 6 2
n
= 74 l2r" +3n+1+6n+6+6)
=, n(2n2+9n+13)
Hence, Sy = De”
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Find sum ton terms of the series: 1+ (24 3) + (44+54+6)+:..

Now, number of terms in first bracket is 1, in the second bracket is 2, in the third
bracket is 3, etc. Therefore, the number of terms in the uth bracket will be n.

Let the sum of the given series of n terms = S

Number of terms in S = 1+2 +34. +4n =D

Also, the first term of S is 1 and common difference is also 1.

En
la. 1+ (ED) 1] 2 (44m? + n — 2)

aan + 1)(n? +n +2)
+

s-12J

SEINWFTAULOSINEWSUNEN®/WO9sqnInoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre

Find the sum of the series

16+ 2 —1)+43 (QA — 2) +4-(1—3)+=+(n— 1) 2 Hl

also, find the coefficient of "1 in the expansion of (1 + 2x + 3x2 ++ nxt)
The rth term of the given series ts T, =r-(n=r+1) = (n+ 1)r— 72

Sum of the series Sy = DPT, = (n+ DIA, - yr? = (n+ D)Zn- Zn?

sm n(n+1) = n(n+1)(2n+1) _ n(n+1) = = _ n(n+1)(n+2)
=(n4 10% e = MEnstamianced) e laamgrar —

Now, (1+ 2x + 3x2 + + nat 1)? =
(1+ 2x 4382 ++ nx") x (1+ 2x + 3x2 + tnx)
Coefficient of al in (1 + 2x + 3x2 ++ nara)

ní(n + D(n +2)
heces Mitin 2) + ERST Anótentre Japindhar

sainyoaaul|UQsaewayie| @/woo'aqnynoA

Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Tags