Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Find the sum ton terms of the series whose nth term is (n? + 2%). we have, Tr =
(12 +2").
n n
= Y ri= S02 +22 Y a
1 k=1 k=1
=|
it
a
=|
it
n(n + 1)(2n+1) + (2427 +23 4-42")
i 2
. y 2 = nn + DQn+1)
k=1
E 2(2"-1)
= nn + 1)(2n +1) + — @- 5
= Inn + 1)(2n+1)+2(2"-1).
12+2°?+..+2”isaGPl
SEINWFTAULOSINEWSUNEN®/WO9sqnInoA
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Sum the series 3 : 8 + 6 : 11 +9: 14 + ton terms.
we have Ty =(kth term of 3, 6, 9, ...) X (kth term of 2, 11, 14, ...)
= {3+ (k-1) x 3} x 18 +(k-—1) x 3} = 3k(3k + 5) = (9k? + 15k).
Sn = ) Ty = ) (9k? + 15k) 9 Ke) +15 4)
ens (¿no FDON+ 1) Yis: (¿no E 1}
= En(n + 1){(2n + 1) + 5} = 3n(n + 1)(n +3).
Hence, the required sum is 3n(n + 1)(n + 3).
sainyoaaul|UQsaewayie| @/woo'aqnynoA
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Sum the series1: 2+34+2°3-44+3-4-54++-ton terms.
wehave Ty =(kth term of 1, 2, 3, ...) X (kth term of 2, 3, 4, ...) x (kth term of 3,
4,5, ...)
={1+(k=1) x 1}4 (2+ (k-1) x1} (34 (k=1) x 1}
= ER E nie |
= Y ri = (eran + 21) à Jere de
ki fl
1
= qn im +1)2+3 ann + 1)(2n+1)+2 en 1)
VL = nj + D} ak =¿n(n+ DOR+D,
y pes Inn + Dye in(n + 1) {nn +4) 4 2@n 41) 49
= En(n+ 1)(n? + 5n +6) = En(n+ 1)(n + 2)(n +3).
SEINWFTAULOSINEWSUNEN®/WO9sqnInoA
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Find the sum of the series 1? + 3? + 5? + ton terms:
We have
Ty = kth term of (1? + 3? + 57 +)
= {1+ (k-1)x 2} = (2k-1)? = (4k? = 4k +1).
n n
Sn=) Te = ) (4K? - 4k +1)
k=1
=4 41? 4 01 k+(1+1+--ntímes)
1 1
=4:¿n(n+1)Qn + 1)-4:0n+1+n
=5 (2+ D(2n+1)- 6+ 1) +3) =F(4n? 1).
Hence, the required sum is (an? - 1).
sainyoaaul|UQsaewayie| @/woo'aqnynoA
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Find the sum 1? +(12 +2?) + (1? + 2? + 32) + tom terms.
We have
Ty, = (1? +2? +3? 4-442) = [hh ner: +1) = E +3k2 + i).
- a = E oye Durs da
k=1
k=1 k=1
171 2 1 1 Let
eg +7 zul + Dan + 1) + ee nd)
1 1 1
san +1? + TL 1)(2n +1) tort 1)
AC ED OR HDI LAB HAE (n +2).
wi.
Se
ai mil
SEINWFTAULOSINEWSUNEN®/WO9sqnInoA
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Find the sum of n terms of thé series 5 + 11 +194+29 +41 ++
SOLUTION LES, = 5 +11+19+29 + --+T,4at+Tp
Sn = BUF 19 +0 4+ Tyo +Ta-ı+ Ta
Ow subtraction, we get
0 = 5 +16 + 8 + 10 + 12 + ---to (n — 1)terms] -T,
(n-Dx[2x6+(n-2)x2]
2
Ty = 5+
> T, =n? 4+3n+1.
Sn = Dhar Tr = Eta? + 3k 4 1) = 12430 kin
= nn +1)@n +1) +3x5n(nF1)+n=Fn(nt2)(n44).
Ta =5+(n—-1)(n+ 4)
sainyoaaul|UQsaewayie| @/woo'aqnynoA
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Find the sum of the firstn terms of the series 347 +13 + 21+31+»+"
LAS, =3+74+13+21+31++T, +7,
S = 3474 13421 4-4 5 ET a +7,
On subtraction, we get 0 = 3 +14 + 6 + 8 +10 +to (n —1)terms] -T,
ST, =3 +14 +648 + to (n—1) terms] = 3 + D x [2 x 4+ (n—2) x 2]
=3+n-Dn+2)=(n+n+1).
Sn = her Tie E (1? + 41) = Ei 2 + E + mn
L1+1+1+ to N terms = nl
=n(n+ 1)(2n+ 1) +5n(n+ D+n= En(n? +3n +5).
sainyoaaul|UQsaewayie| @/woo'aqnynoA
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Find the 50th term of the series 2+ 3 + 6+11+18+::
LS, =24+3+6+11+18+-+T, 1 +Tp
Again Sn =2+3+6+11+-+Tp 1 +Tp.
On subtracting, we get
0=2+114+3+5+7+to(n-— 1)terms] -T,
3T, =2+114+3+5+7+to(n-— 1) terms]
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Find the sum of the series
(33 - 23) + (53 — 45) + (73 — 65) +... to
(à n terms (öl) 10 terms.
we have Ti = {(2k + 1)? — (2k)3}
= (8k3 + 1 + 6k(2k + 1) — 8k} = (12k? + 6k +1).
() sum to n terms is given by Sn = 12 Ek? + 6% ık +n
= 12 x En(n+1)2n+1) +6x5n(n + 1) +n
=2n(n+1)(2n+1)+3n(n+1)+n
=n(n+1)[4n+2+3]+n=n[(n+1)(4n+5)+1]
= n(4n? + 9n + 6) = (4n? + 9n? + 6n).
(ii), Sum to 10 terms is given by
S10 = 10 x [4 x 10? +9 x 10 + 6] = 4960.
SEINWFTAULOSINEWSUNEN®/WO9sqnInoA
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
e Bn gara? | 13423433
Find the sum of the series + De
Let Ty be the nth term of the given series. Then,
++ upto n terms.
2
ne(aterade3taacend)r_ Bi NatGe-sgärnia
M (14345+.+@n-D)) ¿(42m D) 4004
Let Sy denotes the sum of n terms of the given series. Then,
(n? + 2n+1)
dr 1
5,221; = que +2n+1)= ¿Er + 2En + £1)
1 E +1)(2n+1) 2n(n+1) }
TER + +n
SEINWFTAULOSINEWSUNEN®/WO9sqnInoA
4 6 2
n
= 74 l2r" +3n+1+6n+6+6)
=, n(2n2+9n+13)
Hence, Sy = De”
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Find sum ton terms of the series: 1+ (24 3) + (44+54+6)+:..
Now, number of terms in first bracket is 1, in the second bracket is 2, in the third
bracket is 3, etc. Therefore, the number of terms in the uth bracket will be n.
Let the sum of the given series of n terms = S
Number of terms in S = 1+2 +34. +4n =D
Also, the first term of S is 1 and common difference is also 1.
En
la. 1+ (ED) 1] 2 (44m? + n — 2)
aan + 1)(n? +n +2)
+
s-12J
SEINWFTAULOSINEWSUNEN®/WO9sqnInoA
Maths Learning Centre, Jalandhar https://sites.google.com/view/mathslearningcentre
Find the sum of the series
16+ 2 —1)+43 (QA — 2) +4-(1—3)+=+(n— 1) 2 Hl
also, find the coefficient of "1 in the expansion of (1 + 2x + 3x2 ++ nxt)
The rth term of the given series ts T, =r-(n=r+1) = (n+ 1)r— 72
Sum of the series Sy = DPT, = (n+ DIA, - yr? = (n+ D)Zn- Zn?
sm n(n+1) = n(n+1)(2n+1) _ n(n+1) = = _ n(n+1)(n+2)
=(n4 10% e = MEnstamianced) e laamgrar —
Now, (1+ 2x + 3x2 + + nat 1)? =
(1+ 2x 4382 ++ nx") x (1+ 2x + 3x2 + tnx)
Coefficient of al in (1 + 2x + 3x2 ++ nara)