class 11th maths chapter probability cbse

1,532 views 15 slides Feb 24, 2024
Slide 1
Slide 1 of 15
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15

About This Presentation

This the presentation on maths class 11th chapter probability ...... hope you would like it


Slide Content

Click to change
the board colour
UNIT IV
PROBABILITY

Click to change
the board colour
Definition of Probability:
Ifthereare‘n’exhaustive,mutuallyexclusiveandequallylikely
outcomesofarandomexperiment,and‘m’ofthemare
favourabletoanevent‘A’,thentheprobabilityofhappeningof‘A’
is:
wheremisno.offavourableevents
nisno.ofunfavourableevents

Click to change
the board colour
Terminology Used in Definition:
RandomExperiment:
Anoccurrencewhichcanberepeatedanumberoftimes
essentiallyunderthesameconditions&whoseresultcan’t
bepredictedbeforehand,isknownasarandom
experimentorsimplyanexperiment.
SampleSpace&SamplePoint:
Thesetofallpossibleoutcomesofaexperimentiscalleda
samplespace(S)
Theelementsofsamplespacearecalledsamplepoints.
Asamplespaceissaidtobefiniteorinfinite.
ForEg:Ifwethrowadice,itcanresultinanyofthesixnumbers
1,2,3,4,5,6.
Thereforesamplespaceofthisexperimentis
S={1,2,3,4,5,6}and
n(S)=6

Click to change
the board colour
Event:
Anysubsetofsamplespaceiscalledanevent.
IfSisasamplespace,thenitisobviousthatthenullsetØ
andthesamplespaceSitselfareevents.
Foreg:E={2,4,6}andn(A)=3
ExhaustiveOutcomes:
Byexhaustivewemeanthatallthepossibleoutcomeshave
beentakenintoconsiderationandoneofthemmust
happenasaresultofanexperiment.
ForEg(1):Ifwethrowadice,therearesixexhaustiveoutcomes,
namelynumbers1,2,3,4,5,6cominguppermost.
Eg(2):Intossingacointherearetwoexhaustiveoutcomes
namelycomingupofhead&tail.

Click to change
the board colour
MutuallyExclusiveOutcomes:
Outcomesaresaidtobemutuallyexclusiveifthe
happeningofanoutcomeexcludesthepossibilityofthe
happeningofotheroutcomes.
Fore.g.:Intossingacoin,ifheadcomingupthencomingupoftail
isexcludedinthatparticularchance.
EquallyLikelyOutcomes:
Outcomesaresaidtobeequallylikelywhenthe
occurrenceofnoneofthemisexpectedinpreferenceto
others.
Independent&DependentEvent:
Twoeventsaresaidtobeindependentiftheprobabilityof
occurrenceofeitherofthemisnotaffectedbytheoccurrence
ornon–occurrenceoftheother.
Ontheotherhand,iftheoccurrenceofoneeventaffectsthe
probabilityofoccurrenceoftheother,thenthesecondeventis
saidtobedependentonthefirst.

Click to change
the board colour
Illustrations1:
Anunbiaseddiceisthrown.Whatistheprobabilityof
i.gettingasix
ii.gettingeitherfiveorsix
Solution:
Inasinglethrowofdice,therearesixpossibleoutcomesi.e.
1,2,3,4,5,6.
Thusn(S)=6
i.gettingasix
Heren(E)=1
Thereforerequiredprobability:
ii.gettingeitherfiveorsix
Heren(E)=2
Thereforerequiredprobability:

Click to change
the board colour
Illustrations2:
Inasimultaneousthrowoftwodie,findtheprobabilityof
gettingatotalof6.
Solution:
Inasimultaneousthrowoftwodie,wehave6*6i.e.36possible
outcomes.
Thusn(S)=36and
E={(1,5),(2,4),(3,3),(4,2),(5,1)}i.e.n(E)=5
Thereforerequiredprobability:

Click to change
the board colour
THEOREMSOFPROBABILITY:
AdditionTheorem(ORTheorem)
MultiplicationTheorem(ANDTheorem)
AdditionTheorem:
Case1:Wheneventsaremutuallyexclusive:
ItstatethatiftwoeventsA&Baremutuallyexclusivethenthe
probabilityofoccurrenceofeitherAorBisthesumofthe
individualprobabilityofA&B.Symbolically
P(AUB)=P(A)+P(B)
Case2:WheneventsareNOTmutuallyexclusive:
ItstatesthatiftwoeventsA&Barenotmutuallyexclusive,then
probabilityoftheoccurrenceofeitherAorBisthesumofthe
individualprobabilityofA&Bminustheprobabilityofoccurrence
ofbothAandB.Symbolically
P(AUB)=P(A)+P(B)–P(AB)

Click to change
the board colour
ConditionalProbability:
TheprobabilityofoccurrenceofeventA,giventhattheeventB
hasalreadyoccurrediscalledconditionalprobabilityof
occurrenceofAontheconditionthatBhasalreadyoccurred.
ItisdenotedbyP(A/B).
IfAandBareindependentevents,thenP(A/B)=P(A).
MultiplicationTheorem:
TheprobabilityofsimultaneousoccurrenceoftwoeventsA&Bis
theproductofprobabilityofAandtheconditionalprobabilityofB
whenAhasalreadyoccurredorvice–versa.Symbolically
P(AB)=P(A).P(B/A),IfP(A)≠0
P(AB)=P(B).P(A/B),IfP(B)≠0
Itisnotedthatincaseofindependentevents:
P(AB)=P(A).P(B)
Tags