Classification of NPDR.ppt

mdshafeeq5 30 views 18 slides Aug 11, 2022
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

Detection and Classification of Non-Proliferative Diabetic Retinopathy Stages Using Morphological Operations and SVM Classifier


Slide Content

Detection and Classification of Non-
Proliferative Diabetic Retinopathy Stages
Using Morphological Operations and SVM
Classifier
Your logo here
Mohammed Shafeeq Ahmed
Research Scholar,
Dept. of Computer Science,
Research and Development Center, Bharathiar University, Coimbatore

Your logo here
Overview
1.Introduction
1.What is Diabetic Retinopathy
2.Classification of Diabetic Retinopathy
2.Material Collected
3.Methodology
4.Experimental Results
5.Conclusion
6.References

•Peopleswithdiabetescanhaveaneyediseasecalleddiabeticretinopathy.
•Thisiswhenhighbloodsugarlevelscausedamagetobloodvesselsinthe
retina.Thesebloodvesselscanswellandleak.Ortheycanclose,stopping
bloodfrompassingthrough.Sometimesabnormalnewbloodvesselsgrow
ontheretina.Allofthesechangescanstealyourvision.
•Diabeticretinopathyisatermusedforalltheabnormalitiesofthesmall
bloodvesselsoftheretinacausedbydiabetes,suchasweakeningofblood
vesselwallsorleakagefrombloodvessels.
•Diabeticretinopathyisacomplicationofdiabetesthatresultsfromdamage
tothebloodvesselsofthelight-sensitivetissueatthebackoftheretina.
•Diabeticretinopathyaffectanyonewhohastype1diabetesortype2
diabetes.Thelongerapatienthasdiabetes,themorelikelytheyareto
developdiabeticretinopathy.
Your logo here
INTRODUCTION
What is Diabetic Retinopathy?

•Therearetwomainstagesofdiabeticeyedisease.
•Non-proliferativeretinopathyisacommon,usuallymildformthatgenerally
doesnotinterferewithvision.Abnormalitiesarelimitedtotheretinaand
usuallywillonlyinterferewithvisionifitinvolvesthemacula.Ifleftuntreated
itcanprogresstoproliferativeretinopathy
•Proliferativeretinopathy,themoreseriousform,occurswhennewblood
vesselsbranchoutorproliferateinandaroundtheretina.Itcancausebleeding
intothefluid-filledcenteroftheeyeorswellingoftheretina,andleadto
blindness.
Your logo here
Diabetic Retinopathy
A normal retina
A retina showing a sign
of diabetic retinopathy

Thisistheearlystageofdiabeticeyedisease.Manypeoplewithdiabeteshave
it.
Stage1:MildNon-proliferativeRetinopathy.
Atthisearlieststage,microaneurysmsoccur.Theyaresmallareasofballoon-
likeswellingintheretina'stinybloodvessels.
Stage2:ModerateNon-proliferativeRetinopathy.
Asthediseaseprogresses,somebloodvesselsthatnourishtheretinaare
blocked.
Stage3:SevereNon-proliferativeRetinopathy
Manymorebloodvesselsareblocked,deprivingseveralareasoftheretina
withtheirbloodsupply.Theseareasoftheretinasendsignalstothebodyto
grownewbloodvesselsfornourishment.
Stage4:ProliferativeRetinopathy.
Atthisadvancedstage,thesignalssentbytheretinafornourishmenttrigger
thegrowthofnewbloodvesselswhichareabnormalandfragile.Theygrow
alongtheretinaandalongthesurfaceoftheclear,vitreousgelthatfillsthe
insideoftheeye.Bythemselves,thesebloodvesselsdonotcausesymptoms
orvisionloss.However,theyhavethin,fragilewalls.Iftheyleakblood,
severevisionlossandevenblindnesscanresult.
Your logo here
Classification of Non-Proliferative
Diabetic Retinopathy (NPDR)

Theimplementationofthedetectionmethodproposedwasperformedin
MATLAB.Theaccuracyofthemethodwastestedinpublicdatabaseoffundus
imagesDIARETDB1.TheDIARETDB1hasatotalof89(RGB)fundus
imagesofsize1500x1152.Outofthistotal,84imageshavecharacteristic
signsofDR,suchasmicroaneurysms,hemorrhagesandexudates,and5
imagesareofnormalretinas.
Furtherwehaveconductedtheexperimentondifferentdimensionlike(4288x
2848),(786x584),capturedfromdifferentcameraandDRIVEdataset.To
checktheperformanceoftheproposedalgorithm.
Your logo here
Material Collection

Your logo here
Methodology
Feature Extraction
SVM Classifier
Pre-processing
Applying Morphological Method
Input Fundus Images
Mild Moderate Severe
Work Flow of NPDR Classification
•Weproposedanefficientmethodfor
automaticdetectionandclassificationof
NPDR stagesusingmorphological
operationsandSVMclassifier.
•Weperformexperimentsonalarge
datasetcollectedfromthepublicly
availableDIARETDB1andDRIVE
database.
•Intheproposedmethod,bloodvessels,
MAsandexudatesareusedtodetectDR
stages.Thetechniqueusedisbydividing
thefundusimageintofourquadrantsand
theareaofMAsandexudatesiscomputed
ateachofthefourquadrants.SVM
classifierisusedtoidentifythedifferent
stagesofNPDRinfundusimage.

Preprocessing:
•Inputimagesisconvertedtoastandardsizetoimprovethequalityofinput
image.
•GreenchannelisusedforfeatureextractionofDRfromfundusimages.
•ContrastenhancementoftheoutputimageisdoneusingCLAHEapproach.
BloodVesselDetection:
•Morphologicaloperationisusedforextractionofbloodvesselsanddetection
andeliminationofOpticDisc.
•SegmentationisusedtoeliminateotherfeatureslikeMAsandexudates.
•Lasttheareaofbloodvesselsiscalculated.
•Bloodvesselsareaismoreinaffectedretinaascomparetothenormalretina.
•Henceweclassifiesasmild,moderateandsevereNPDR.
MicroaneurysmsDetection:
•EdgedetectionisachievedbyusingCannyEdgedetector.
•Thresholdingtechniqueisusedtoeliminatenoiseandexudates.
•Theresultantimageisdividedintofourquadrantsandcomputethearea
occupiedbyMAsineachquadrants.
Your logo here

ExudatesDetection:
•ExudatesaredetectedusingMorphologicaloperations.
•Normalretinalimagedoesnotcontainanyexudates.
•MildNPDRmaycontainexudates,butonlyinonequadrant.
•ModerateNPDRareaffectedwithexudatesanddistributedinatleasttwo
quadrants.
•SevereNPDRareaffectedwithnumerousexudatesandpresentinalmostall
thequadrants.
Your logo here

•Theproposedmethodhasbeenevaluatedusing129fundusimages
collectedfromtheDIARETDB1andDRIVEdatabase.
•AllthethreefeaturesofDRhavebeendetectedsuccessfully.
•InthenormalimagesthebloodvesselsoccupythelargerareaandMAsand
exudatesareabsent.
•InthecaseofmildNPDRandmoderateNPDR,theMAsandexudates
showedtheirpresenceandinsevereNPDRtheirprominenceismore.
•TheSVMclassifierhasbeenusedforclassification.
•Thefeatureswereclassifiedasnormal,mildNPDR,moderateNPDR,and
severeNPDR.
•Anaverageaccuracyof100%,93.33%,100%and86.67%isobtainedfor
normal,mildNPDR,moderateNPDR,andsevereNPDR,respectively.The
sensitivityof96.08%andspecificityof97.92%isobserved.Thedetailsof
theclassificationobtainedarepresentedinTable1.
•Drawback:TherecognitionresultsinthecaseofseverNPDRislow
comparedtootherstagessincemanyofthefundusimageswithsevere
NPDRweremisclassifiedasmoderateNPDR.
Your logo here
Experimental Results

Your logo here
No MAs or Exudates Detected
(NORMAL) Fundus Images

Your logo here
Mild NPDR Detected Fundus Images

Your logo here
Moderate NPDR Detected Fundus
Images

Your logo here
Sever NPDR Detected Fundus
Images

•AnautomatedsystemwasdevelopedtodetectandclassifytheNPDR
stagesfromthefundusimagesusingSVMclassifierandachievedahigh
percentageofsensitivityandspecificity.
•Theadoptedmethodologyismoreefficientandeffectivethanother
methods.
•Wehaveused129fundusimagescollectedfromtheDIARETDB1and
DRIVEdatabases.
•TheperformanceofthemethodfordetectionandclassificationofNPDR
stagesfromfundusimageshasachievedahighsuccessfulpercentage.
•Thismethodishighlyflexibletootherdatabases.
•ThesystemhasclassifiedtheNPDRstagesinnormal,mildNPDR,
moderateNPDRandsevereNPDRwithanaverageaccuracyof95%,an
averagesensitivityof96.08%andanaveragespecificityof97.92%.
•Themainpurposeofthisproposedworkistohelptheophthalmologistsin
screeningtheDRusingtheSVMclassifier.
•Thus,thisSVMtechniquehasgivenasuccessfulDRscreeningmethod
whichhelpstodetectthediseaseinearlystageandpreventsvisionloss.
Your logo here
Conclusions

1.ReportontheExpertCommitteeontheDiagnosisandClassificationofDiabetesMellitus,DiabetesCare,July1997.
2.AmericanDiabetesAssociation,DiagnosisandClassificationofDiabetesMellitusDiabetesCare,Jan2013.
3.SicreeR,ShawJ,ZimmetP.Diabetes&ImpairedGlucoseTolerance.BakerIDIHeartandDiabetesIns.IDFDiabetesAtlas.4
th
ed.
DiabetesandIGT,2009.
4.RamachandranA,SnehalathaC,KapurA,VijayV,MohanV,DasAK,etal.DiabetesEpidemiologyStudyGroupInIndia(DESI):High
prevalenceofdiabetesandimpairedglucosetoleranceinIndia:NationalUrbanDiabetesSurvey.Diabetologia2001.
5.MohanV,MathurP,DeepaR,DeepaM,ShuklaDK,MenonGR,etal.Urbanruraldifferencesinprevalenceofself-reporteddiabetesin
India:TheWHO-ICMRIndianNCDriskfactorsurveillance.DiabResClinPract2008.
6.ChowCK,RajuPK,RajuR,ReddyKS,CardonaM,CelermajerDS,etal.TheprevalenceandmanagementofdiabetesinruralIDC
2006.
7.http://www.icoph.org/downloads/Diabetic-Retinopathy-Detail.pdf.
8.DWelfer,J.Scharcanski,D.R.Marinho,Acoarse-to-finestrategyforautomaticallydetectingexudatesincoloreyefundusimages,
ComputerizedMedicalImagingandGraphics,2010.
10.URAcharya,CMLim,EYKNg,CCheeandTTamura,Computer-baseddetectionofdiabeticretinopathystagesusingdigitalfundus
images:Parth:journalofengineeringinMedicine,2009.
11.Niemeijer,M,vanGinneken,B.,Staal,J.,Suttorp-Schulten,M.,andAbramoff,M.Automaticdetectionofredlesionsindigitalcolor
fundusphotographs.IEEEtransmedimaging,2005.
12.JNayak,PSBhat,URAcharya,CMLim,andMKagathi,AutomatedIdentificationofDiabeticRetinopathyStagesUsingDigital
FundusImages.J.Med.Systems,2008.
13.H.LiandO.Chutatape,“Automatedfeatureextractionincolorretinalimagesbyamodelbasedapproach,”IEEETrans.onMedical
Engineering,2004.
17.C.I.Sanchez,M.Garcia,A.Mayo,M.LopezandR.Hornero,“Retinalimageanalysisbasedonmixturemodelstodetecthardexudates,”
MedicalImageAnalysis,2009.
18.AkaraSopharak,BunyaritUyyanonvara,SarahBarmanproposedan“Automaticexudatesdetectionfordiabeticretinopathyscreening”,
2009.
19.http://www.it.lut.fi/project/imageret/diaretdb1/
20.http://www.isi.uu.nl/Research/Databases/DRIVE
21.MohammedShafeeqAhmedandDr.B.Indira,“Automaticdetectionandidentificationofexudatesinretinalfundusimagesusing
morphologicaltechniques”,InternationalConferenceonRecentTrendsinEngineeringandMaterialSciences,2016.
22.RafaelC.Gonzalez,RichardEugeneWoods,StevenL.Eddins“DigitalimageprocessingusingMatlab”PearsonEducationIndia.
Your logo here
Reference

Your logo here
Thank You

Your logo here
Tags