Clinical prediction modeling in the era of AI: a blessing and a curse

MaartenvanSmeden 777 views 107 slides Aug 22, 2024
Slide 1
Slide 1 of 107
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107

About This Presentation

Keynote for the 8th Danish Bioinformatics conference in Kopenhagen, 22 August 2024.


Slide Content

Maarten van Smeden, PhD
Julius Center forHealth Sciences andPrimaryCare
8th Annual Danish Bioinformatics conference
Kopenhagen, 22 August 2024
Clinicalpredictionmodeling
in theera of AI:
a blessinganda curse

Disclosures
•Nothing to disclose

In this lecture, I will talk about….

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
AI
BLESSINGS
AND
CURSES

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Imgsource: https://www.topbots.com/generative-vs-predictive-ai/

Kopenhagen, 22 Aug 2024 @MaartenvSmedenDe Hond et al, Lancet Digital Health, 2024

Prediction
Source: https://www.intellspot.com/unsupervised-vs-supervised-learning/#google_vignette

Kopenhagen, 22 Aug 2024 @MaartenvSmedenvan Smeden et al., JCE, 2021, doi: 10.1016/j.jclinepi.2021.01.009

Adversarialexample
https://bit.ly/2N4mQFo; https://bit.ly/2W7X9rF

Kopenhagen, 22 Aug 2024 @MaartenvSmedenhttps://tinyurl.com/3knkuzs3

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Image source: https://shorturl.at/styGJ

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
APGAR score
Apgar et al. JAMA, 1958

Virginia Apgar (1909- 1974)

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Still commonly used, but…
Sources: doi: 10.1097/ANC.0000000000000859, 10.1136/bmj.38117.665197.F7

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
“65% of U.S. physiciansusedMDCalcon a weeklybasis”

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Landscape of clinicalpredictionmodels
•42 models for kidney failure in chronic kidney disease (Ramspek, 2019)
•40 models for incident heart failure (Sahle, 2017)
•37 models for treatment response in pulmonary TB (Peetluk, 2021)
•35 models for in vitro fertilisation (Ratna, 2020)
•34 models for stroke in type-2 diabetes (Chowdhury, 2019)
•34 models for graft failure in kidney transplantation (Kabore, 2017)
•31 models for length of stay in ICU (Verburg, 2016)
•30 models for low back pain (Haskins, 2015)
•27 models for pediatric early warning systems (Trubey, 2019)
•27 models for malaria prognosis (Njim, 2019)
•26 models for postoperative outcomes colorectal cancer (Souwer, 2020)
•26 models for childhood asthma (Kothalawa, 2020)
•25 models for lung cancer risk (Gray, 2016)
•25 models for re-admissionafteradmittedforheartfailure (Mahajan, 2018)
•23 models for recovery after ischemic stroke (Jampathong, 2018)
•23 models for delirium in older adults (Lindroth, 2018)
•21 models for atrial fibrillation detection in community (Himmelreich, 2020)
•19 models for survival after resectable pancreatic cancer (Stijker, 2019)
•18 models for recurrence hep. carc. after liver transplant (Al-Ameri, 2020)
•18 models for future hypertension in children (Hamoen, 2018)
•18 models for risk of falls after stroke (Walsh, 2016)
•18 models for mortality in acute pancreatitis (Di, 2016)
•17 models for bacterial meningitis (van Zeggeren, 2019)
•17 models for cardiovascular disease in hypertensive population (Cai, 2020)
•14 models for ICU delirium risk (Chen, 2020)
•14 models for diabetic retinopathy progression (Haider, 2019)
•1382 models for cardiovascular disease (Wessler, 2021)
•731 models related to COVID-19 (Wynants, 2020)
•408 models for COPD prognosis (Bellou, 2019)
•363 models for cardiovascular disease general population (Damen, 2016)
•327 models for toxicity prediction after radiotherapy (Takada, 2022)
•263 prognosis models in obstetrics (Kleinrouweler, 2016)
•258 models mortality after general trauma (Munter, 2017)
•160 female-specific models for cardiovascular disease (Baart, 2019)
•142 models for mortality prediction in preterm infants (van Beek, 2021)
•119 models for critical care prognosis in LMIC (Haniffa, 2018)
•101 models for primary gastric cancer prognosis (Feng, 2019)
•99 models for neck pain (Wingbermühle, 2018)
•81 models for sudden cardiac arrest (Carrick, 2020)
•74 models for contrast-induced acute kidney injury (Allen, 2017)
•73 models for 28/30 day hospital readmission (Zhou, 2016)
•68 models for preeclampsia (De Kat, 2019)
•68 models for living donor kidney/iver transplant counselling (Haller, 2022)
•67 models for traumatic brain injury prognosis (Dijkland, 2019)
•64 models for suicide / suicide attempt (Belsher, 2019)
•61 models for dementia (Hou, 2019)
•58 modelsforbreastcancerprognosis(Phung, 2019)
•52 modelsforpre‐eclampsia(Townsend, 2019)
•52 modelsforcolorectalcancerrisk (Usher-Smith, 2016)
•48 modelsforincident hypertension(Sun, 2017)
•46 models for melanoma (Kaiser, 2020)
•46 models for prognosis after carotid revascularisation (Volkers, 2017)
•43 models for mortality in critically ill (Keuning, 2019)

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Landscape of clinicalpredictionmodels
•42 models for kidney failure in chronic kidney disease (Ramspek, 2019)
•40 models for incident heart failure (Sahle, 2017)
•37 models for treatment response in pulmonary TB (Peetluk, 2021)
•35 models for in vitro fertilisation (Ratna, 2020)
•34 models for stroke in type-2 diabetes (Chowdhury, 2019)
•34 models for graft failure in kidney transplantation (Kabore, 2017)
•31 models for length of stay in ICU (Verburg, 2016)
•30 models for low back pain (Haskins, 2015)
•27 models for pediatric early warning systems (Trubey, 2019)
•27 models for malaria prognosis (Njim, 2019)
•26 models for postoperative outcomes colorectal cancer (Souwer, 2020)
•26 models for childhood asthma (Kothalawa, 2020)
•25 models for lung cancer risk (Gray, 2016)
•25 models for re-admissionafteradmittedforheartfailure (Mahajan, 2018)
•23 models for recovery after ischemic stroke (Jampathong, 2018)
•23 models for delirium in older adults (Lindroth, 2018)
•21 models for atrial fibrillation detection in community (Himmelreich, 2020)
•19 models for survival after resectable pancreatic cancer (Stijker, 2019)
•18 models for recurrence hep. carc. after liver transplant (Al-Ameri, 2020)
•18 models for future hypertension in children (Hamoen, 2018)
•18 models for risk of falls after stroke (Walsh, 2016)
•18 models for mortality in acute pancreatitis (Di, 2016)
•17 models for bacterial meningitis (van Zeggeren, 2019)
•17 models for cardiovascular disease in hypertensive population (Cai, 2020)
•14 models for ICU delirium risk (Chen, 2020)
•14 models for diabetic retinopathy progression (Haider, 2019)
•1382 models for cardiovascular disease (Wessler, 2021)
•731 models related to COVID-19 (Wynants, 2020)
•408 models for COPD prognosis (Bellou, 2019)
•363 models for cardiovascular disease general population (Damen, 2016)
•327 models for toxicity prediction after radiotherapy (Takada, 2022)
•263 prognosis models in obstetrics (Kleinrouweler, 2016)
•258 models mortality after general trauma (Munter, 2017)
•160 female-specific models for cardiovascular disease (Baart, 2019)
•142 models for mortality prediction in preterm infants (van Beek, 2021)
•119 models for critical care prognosis in LMIC (Haniffa, 2018)
•101 models for primary gastric cancer prognosis (Feng, 2019)
•99 models for neck pain (Wingbermühle, 2018)
•81 models for sudden cardiac arrest (Carrick, 2020)
•74 models for contrast-induced acute kidney injury (Allen, 2017)
•73 models for 28/30 day hospital readmission (Zhou, 2016)
•68 models for preeclampsia (De Kat, 2019)
•68 models for living donor kidney/iver transplant counselling (Haller, 2022)
•67 models for traumatic brain injury prognosis (Dijkland, 2019)
•64 models for suicide / suicide attempt (Belsher, 2019)
•61 models for dementia (Hou, 2019)
•58 modelsforbreastcancerprognosis(Phung, 2019)
•52 modelsforpre‐eclampsia(Townsend, 2019)
•52 modelsforcolorectalcancerrisk (Usher-Smith, 2016)
•48 modelsforincident hypertension(Sun, 2017)
•46 models for melanoma (Kaiser, 2020)
•46 models for prognosis after carotid revascularisation (Volkers, 2017)
•43 models for mortality in critically ill (Keuning, 2019)
Over 260 systematic reviews of clinical prediction models

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Clinical prediction models
•> 150,000 clinical prediction models exist
•From simple scoring rules (e.g. APGAR) to increasingly complex
AI-based prediction models
Source: Arshiat al 2024, OSF, doi: 10.31219/osf.io/4txc6 .

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

A new clinical prediction model
is developed
every 1.5 hours
Source: Arshiat al 2024, OSF, doi: 10.31219/osf.io/4txc6 .

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
PREDICTION MODELS USED IN PRACTICE
PREDICTION MODELS THAT WILL NEVER BE USED IN PRACTICE
RESEARCH WASTE?

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Example: living review
COVID-19 predictionmodels
•731 prediction models between
March 2020 and February 2021
•Many models poorly reported
•Only 4% low risk of bias

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Externalvalidation
COVID-19 prediction
models

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Not just COVID

What is AI going to do to the
field of clinical prediction
models?

What is AI doing for us now?

Self driving cars, etc
CreatedusingDall-E

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
IBM Watson winning Jeopardy! (2011)
https://bbc.in/2TMvV8I

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
IBM Watson for oncology
bit.ly/2LxiWGj ; bit.ly/3Esu68T

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Tech company business model

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Tech company business model
https://bit.ly/2HSp8X5; https://bit.ly/2Z0Pfop; https://bit.ly/2KIcpHG; https://bit.ly/33IJhr9

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Proportionof studies indexedin MedlinewiththeMedicalSubject
Heading(MeSH) term “ArtificialIntelligence”
Faeset al. doi: 10.3389/fdgth.2022.833912

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Other success stories
https://go.nature.com/2VG2hS7; https://bbc.in/2Z1drXQ; https://bit.ly/2TAfRIP

https://twitter.com/AndrewLBeam/status/1620855064033382401?s=20&t=VO9_LdFFCj_wcwIQLvKcIQ

Source: Ilse Kant (UMC Utrecht)

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmedenhttps://bit.ly/2v2aokk

Kopenhagen, 22 Aug 2024 @MaartenvSmedenAyers, JAMA Int Med, 2023, doi: 10.1001/jamainternmed.2023.1838
*Answers by healthcare professionals on Redit vs ChatGPT

Kopenhagen, 22 Aug 2024 @MaartenvSmedenSource: https://twitter.com/TansuYegen/status/1635388676539813889?s=20

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Source: https://www.science.org/content/article/alarmed-tech-leaders-call-ai-research-pause

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Reviewer#2

Three Myths
about
Machine
learning

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Myth 1: “ML methods come from computer science”
Leo Breiman Jerome H
Friedman
Trevor Hastie Robert TibshiraniDanielaWitten
CART, random forest Gradientboosting Elements of statistical
learning
Lasso Introductiontostatistical
learning
Edu Physics/Math Physics Statistics Statistics Statistics
Job titleProfessor of StatisticsProfessor of StatisticsProfessor of StatisticsProfessor of StatisticsProfessor of Statistics

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Myth 2:“ML methods are for prediction, statistics is
for explaining”
1
See further: KreiffandDiaz Ordaz; https://bit.ly/2m1eYdK
ML and causal inference, small selection
1
•Superlearner (e.g. van der Laan)
•High dimensional propensity scores (e.g. Schneeweiss)
•Causal forests (e.g. Athey)
•The book of why (Pearl)

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Twocultures
Breiman, Stat Sci, 2001, DOI: 10.1214/ss/1009213726

Kopenhagen, 22 Aug 2024 @MaartenvSmedenFaeset al. doi: 1 0.3 389/fd gth .20 22.833912
Language

Kopenhagen, 22 Aug 2024 @MaartenvSmedenRobert Tibshirani: https://stanford.io/2zqEGfr
Machine learning: large grant = $1,000,000
Statistics: large grant = $50,000

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
ML referstoa culture, nottomethods
Distinguishing between statistics and machine learning
•Substantial overlap methods used by both cultures
•Substantial overlap analysis goals
•Attempts to separate the two frequently result in disagreement
Pragmatic approach:
I’ll use “ML” to refer to models roughly outside of the traditional regression
types of analysis: decision trees (and descendants), SVMs, neural networks
(including Deep learning), boosting etc.

Kopenhagen, 22 Aug 2024 @MaartenvSmedendoi: 10.1001/jamapediatrics.2023.0034

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Myth 3: Machine learning is (always) better at
prediction
Christodoulouet al. Journal of ClinicalEpidemiology, 2019, doi: 10.1016/j.jclinepi.2019.02.004

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Myth 3: Machine learning is (always) better at
prediction
Christodoulouet al. Journal of ClinicalEpidemiology, 2019, doi: 10.1016/j.jclinepi.2019.02.004

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Sources of predictionerror
Y=????????????+??????
For a model ??????theexpectedtest predictionerror is:
σ
2
+bias
2መ??????
????????????+varመ??????
????????????
See equation2.46 in Hastieet al., theelementsof statisticallearning, https://stanford.io/2voWjra
Irreducible error Meansquaredpredictionerror
(withE??????=0,var??????=??????
2
,valuesin??????arenotrandom)
What we don’t model How we model
≈≈

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Sources of predictionerror
Y=????????????+??????
For a model ??????theexpectedtest predictionerror is:
σ
2
+bias
2መ??????
????????????+varመ??????
????????????
See equation2.46 in Hastieet al., theelementsof statisticallearning, https://stanford.io/2voWjra
Irreducible error Meansquaredpredictionerror
(withE??????=0,var??????=??????
2
,valuesin??????arenotrandom)
What we don’t model How we model
≈≈
In words, two main components for error in predictions are:
•Mean squared predictor error
•Under control of the modeler

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Sources of predictionerror
Y=????????????+??????
For a model ??????theexpectedtest predictionerror is:
σ
2
+bias
2መ??????
????????????+varመ??????
????????????
See equation2.46 in Hastieet al., theelementsof statisticallearning, https://stanford.io/2voWjra
Irreducible error Meansquaredpredictionerror
(withE??????=0,var??????=??????
2
,valuesin??????arenotrandom)
What we don’t model How we model
≈≈
In words, two main components for error in predictions are:
•Mean squared predictor error
•Under control of the modeler
overfitting underfitting ”just right”

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Sources of predictionerror
Y=????????????+??????
For a model ??????theexpectedtest predictionerror is:
σ
2
+bias
2መ??????
????????????+varመ??????
????????????
See equation2.46 in Hastieet al., theelementsof statisticallearning, https://stanford.io/2voWjra
Irreducible error Meansquaredpredictionerror
(withE??????=0,var??????=??????
2
,valuesin??????arenotrandom)
What we don’t model How we model
≈≈
In words, two main components for error in predictions are:
•Mean squared predictor error
•Under control of the modeler
•Irreducible error
•Not under direct control of the modeler

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
What can we do to reduce “irreducible” error?
Changingtheinformation
•Using text(NLP/textmining)
•For research: e.g. predictinglife expectancy
https://bit.ly/2k8Ao8e
•Analyzingsocialmedia posts
•e.g. pharmacovigilance, adverse events monitoring via Twitter posts
https://bit.ly/2m0KKrg
•Speech signalprocessing
•e.g. Parkinson‟sdisease,
https://bit.ly/2v3ZdHR
•Medicalimaging

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Examples where
AI has done well

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Example: retinaldisease
Gulshanet al, JAMA, 2016, 10.1001/jama.2016.17216; Picture retinopathy: https://bit.ly/2kB3X2w
Diabeticretinopathy
Deep learning (= Neural network)
•128,000 images
•Transfer learning(preinitialization)
•Sensitivityandspecificity> .90
•Estimatedfromtraining data

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Approval of AI devices by FDA rapidly growing
Source: https://tinyurl.com/khn4dvyb (accessed21/08/2024)

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Examples where
AI has done poorly

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Predictingmortality–theconclusion
PlosOne, 2018, DOI: 10.1371/journal.pone.0202344

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Predictingmortality–theresults
PlosOne, 2018, DOI: 10.1371/journal.pone.0202344

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Predictingmortality–themedia
PlosOne, 2018, DOI: 10.1371/journal.pone.0202344; https://bit.ly/2Q6H41R; https://bit.ly/2m3RLrn

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
HYPE!

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
RecidivismAlgorithm
Pro-publica(2016) https://bit.ly/1XMKh5R

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Skin cancerandrulers
Estevaet al., Nature, 2016, DOI: 10.1038/nature21056; https://bit.ly/2lE0vV0

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmedenhttps://www.tctmd.com/news/machine-learning-helps-predict-hospital-mortality-post-tavr-skepticism-abounds

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
AI assistance leads tomoreaccurate diagnosis of livercancer!

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
AI assistance leads tomoreaccurate diagnosis of livercancer! IfAI is correct
AI assistance leads tolessaccurate diagnosis of livercancer! IfAI is incorrect

How can the field of clinical prediction
models using AI maximise benefits
and minimize risks and waste?

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Image source: http: //www.meditationcircle.org.uk/notes/acceptance/

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
The ML/AI model is only one small element in
getting the model in clinical practice
Source: https://tinyurl.com/jr23pdsk; courtesyDrIlse Kant (UMCU)

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Leakypipeline of clinicalpredictionmodels
Van Royen et al, ERJ, doi: 10.1183/13993003.00250-2022, alsocreditstoLaure Wynants

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Flexiblealgorithmsare data hungry
Fromslide deck Ben van Calster: https://bit.ly/38Aqmjs

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Flexiblealgorithmsare energy hungry
The costsof training (cloudcomputing) theTransformer
once(!) are estimatedat 1 to3 millionDollars
https://bit.ly/33Dj38X

Kopenhagen, 22 Aug 2024 @MaartenvSmeden

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Expect heterogeneity in model performance
Wessler, CirculationCQO ,2021, doi:10.1161/CIRCOUTCOMES.121.007858

kr

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Dutch guideline predictionmodelsbasedof AI
https://www.leidraad-ai.nl/

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Dutch guideline predictionmodelsbasedof AI
https://www.leidraad-ai.nl/Collection and
management of the
data
Phase 1
Development of the
AIP
Phase 2
Validation of the
AIPA
Phase 3
Development of the
required software
Phase 4
Impact assessment
of the AIPA in
combination with
the software
Phase 5
Implementation
and use of the AIPA
with software in
daily practice
Phase 6
Saskia Haitjema
Andre Dekker
Paul Algra
Amy Eikelenboom
Christian van
Ginkel
Martine de Vries
Daniel Oberski
Desy Kakiay
Kicky van
Leeuwen
Joran Lokkerbol
Evangelos
Kanoulas
Gabrielle
Davelaar
Wouter Veldhuis
Bart-Jan Verhoeff
Vincent Stirler
Daanvan den
Donk
HuibBurger
Giovanni Cina
Martijn van der
Meulen
MauritsKaptein
Floor van
Leeuwen
Eggevan der Poel
Marcel Hilgersom
Sade Faneyte
Jonas Teuwen
Teus Kappen
Ewout Steyerberg
Leo Hovestadt
René Drost
Bart Geerts
Anne de Hond
René Verhaart
NynkeBreimer
Karen Wiegant
Laure Wynants
Lysette
Meuleman

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
AI ecosystem in the University Medical Center Utrecht
You are here

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
R&D concentrated in 5 AI labs
https://www.umcutrecht.nl/en/campaign/ai-labs

Team science

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
•Hype
•AI rebranding and
reinventions
•Traditional issues such
as low N, lack of
validation, poor
reporting, data quality,
generalizability
•More research waste
•Energy consumption
•Other expenses beyond
model training
AI BLESSINGS AND CURSES
•Real innovation
•Methods/architectures
allowing (unstructured)
use of new types of
data at scale
•Computing power
•Software
•Clinical trials showing
benefit of AI assistance
•Willingness to invest in
prediction using AI

Kopenhagen, 22 Aug 2024 @MaartenvSmeden
Maarten van Smeden
Julius Center for Health Sciences and Primary Care
University Medical Center Utrecht
Director of UMC Utrecht AI methods lab
Team lead of health data science group
Head of Julius Center’s methods program
E-mail: [email protected]

Kopenhagen, 22 Aug 2024 @MaartenvSmeden