What 7
Juste fuster analysis is
nsupervised learning technigue
4 の pre 0 5 x way thor
byes の the same oz の を (cluster
AL mo mila each other
than Lo tho ın の の 2 る
oaithn
-mean chu
ieranchical
Eoupectalion. Moximizalion. algw
> Density based clustercng
®
K- means clustering
Algonithw
Randomly seleck k cluster cenbe
VI Ve
Step 2: Colewlate ho distance belween
each data point aj ond each cluster
Step a
Assign, 008 point a; to
the cluster, ce vi dei which
the distance lla Vell is minimum
Step 4: Recaleulate each cluiter contr by
taking the average of clusters data pais
Step 5: Repeat
P ん し step 2 to steps
until Ahe accalwloted cluster centers
の Az some as previous の ん No
reassignment of date point happend:
いい を 호
性 5
Distance between data poin
We as that each. data paint à
step 2: Enpectalion step (E-Step)- Using the
observed available data of the
dataset, estimate guess) the values
of the missing data.
Step 3: Maximigälin step (M-step) - Complete deta]
genenaded adten the enpectadion step
ts used 加 update the parameters, 0,
by manimizing Likelhood fanction
Steps: Repent slep 2 and 3 until converge.
9 ds
unlabeled dla pot
pao blero
algoasthm
Sor.
Gaus:
sian Mixture
to blem
Suppose we ant given a
observations Lt, Rz,
ne variable X
Let X be a mix of k normal
distoibubions ond Lek the probability density
Likelihood Sunctien
Mi soe, M (for
the means Ms, the
and the mining
HT
Recolculate the promos using
step 4:Evaluate the Log-likelihood Sunetiom
and check Sor convergence of either
the parameters or the Jey. Sikelihood
function Tf coveye ther stop;
Ehe ga step 2.