COA Chap 2.pptxCOA Chap 2.pptxCOA Chap 2.pptx

MAHERMOHAMED27 0 views 25 slides Sep 27, 2025
Slide 1
Slide 1 of 25
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25

About This Presentation

COA Chap 2.pptxCOA Chap 2.pptxCOA Chap 2.pptx


Slide Content

Welcome

http://www.mahergelle.com By Eng.Adulahi M. Adan Computer Organization and Architecture

Chapter TWO: - Number System Presentation

Decimal System The decimal system is composed of 10 numerals or symbols. These 10 symbols are 0,1,2,3,4,5,6,7,8,9; using these symbols as digits of a number, we can express any quantity. Example : 3501.51 3 5 1 . 5 1 digit decimal point M ost S ignificant D igit L east S ignificant D igit

Binary System The binary system is composed of 2 numerals or symbols 0 and 1; using these symbols as digits of a number, we can express any quantity. Example : 1101.01 1 1 1 . 1 bit binary point M ost S ignificant B it L east S ignificant B it

Decimal Number Quantity (positional number) 3 5 0 1 (base-10) 1 X 10 = 1 0 X 10 1 = 5 X 10 2 = 500 3 X 10 3 = 3000 3000 + 500 + + 1 = 3501

Binary-to-Decimal Conversion 1 1 0 1 (base-2) 1 X 2 = 1 0 X 2 1 = 1 X 2 2 = 4 1 X 2 3 = 8 8 + 4 + + 1 = 13 1101 2 = 13 10

Decimal Number Quantity (fractional number) . 5 8 1 (base-10) 5 X 10 -1 = 5x0.1 = 0.5 8 X 10 -2 = 8x0.01 = 0.08 1 X 10 -3 = 1x0.001 = 0.001 0.5 + 0.08 + 0.001 = 0.581

Binary-to-Decimal Conversion . 1 0 1 (base-2) 1 X 2 -1 = 1x0.5 = 0.5 0 X 2 -2 = 0x0.25 = 1 X 2 -3 = 1x0.125 = 0.125 0.5 + + 0.125 = 0.625 0.101 2 = 0.625 10

Decimal-to-Binary Conversion (positional number) 2 5 0 250 2 125 2 Remainder 62 2 Remainder 1 31 2 Remainder 15 2 Remainder 1 7 2 Remainder 1 3 2 Remainder 1 1 Remainder 1 250 10 = 1 1 1 1 1 0 1 0 2

Decimal-to-Binary Conversion (fractional number) 0 . 4375 0.4375 x 2 = . 8750 0.8750 x 2 = 1 . 75 0.75 x 2 = 1 . 5 0.5 x 2 = 1 . 0.4375 10 = 0.0111 2

Oc t a l Num b e r S y s t em C h a r a ct e r i s t i cs A p os i t i o n a l nu mb e r s y s t em H as t o t al 8 s y m b o l s o r d i g i t s H e n c e , i t s b a s e = 8 • • (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7) . T h e m a x i m u m va l u e o f a s i n g l e d i g i t i s 7 ( o n e l e ss th an th e va lu e o f th e b a se • E a c h p os i t i o n of a d i g i t re p r e s e nt s a s p e c i f i c p o w er of • th e b a s e (8) ( Cont i nu e d on ne x t sl i de)

Oc t a l Num b e r S y s t em ( Co nti n u ed f r o m pr e v i o u s s li de ..) • S i n c e th ere a r e o n l y 8 d i g i t s, 3 b i t s ( 2 3 = 8) a re s u ff i c i e n t t o re p re s e n t a n y oc t al nu mb e r i n b in a ry Ex a mp le 2057 8 = = ( 2 x 8 3 ) + ( x 8 2 ) + ( 5 x 8 1 ) + ( 7 x 8 ) 102 4 + + 4 + 7 = 107 1 10

He xa d e c i m al N um b e r S y s t em C h a r a ct e r i s t i cs A p os i t i o n a l nu mb e r s y s t em H as t o t al 1 6 s y mb o l s o r d i g i t s (0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , • • 8 , 9 , A , B , C, D, E , F) . He n c e i t s b a s e = 16 T h e s y mb o l s A , B, C, D, E a n d F r e p r e s e n t th e d e c i m al v a l u e s 10 , 11 , 12 , 13 , 1 4 a n d 15 res p e c t i v e ly • T h e m a x i m u m th an th e va lu e va l u e o f a s i n g l e o f th e b a s e) d i g it i s 15 ( o n e l e ss • ( Cont i nu e d on ne x t sl i de)

He xa d e c i m al N um b e r S y s t em ( Co nti n u ed f r o m pr e v i o u s s li de ..) • E a c h p os i t i o n o f a d i g i t re p r e s e nt s a s p e c i f i c p o w er o f th e b a s e (16) • Sin c e th er e a r e o n l y 1 6 d i g i t s , 4 b i t s (2 4 = 16 ) a re s u ff i c i e n t t o re p r e s e n t a n y h e xa d e c i m al nu mb er b i n a ry i n Ex a mp le 1AF 16 = = = = ( 1 x 16 2 ) + ( A x 16 1 ) + ( F x 1 6 ) 1 x 25 6 + 1 0 x 1 6 + 1 5 x 1 25 6 + 16 + 15 43 1 10

C o nv e rt ing a N u m b e r o f A n ot h e r Ba s e t o a D e cimal N umb er M ethod St e p 1: D e t er m i n e th e co l u m n (p os i t i o n a l ) v a l u e o f e a c h d i g it St e p 2: M u l t i p l y th e o b t a in e d co l u m n va lu e s b y th e d i g i t s i n t h e co r res p o nding co l u m ns St e p 3: Ca l c u l a t e th e s u m of th e s e p r o du c ts ( Cont i nu e d on ne x t sl i de)

C o nv e rt ing a N u m b e r D e cimal N umb er ( Co nti n u ed f r o m pr e v i o u s s li de ..) o f A n ot h e r Ba s e t o a E xample 47 06 8 = ? 10 C o mm o n v a l u e s m u ltiplied b y t h e c o rr e s p o n di n g digits 4706 8 = 4 x 8 3 + 7 x 8 2 + x 8 1 + 6 x 8 = = = 4 x 5 1 2 + 7 2 4 8 + 4 48 25 2 10 x 6 4 + + 6 x 1 + + 6 Sum of th e se produ c ts

C o nv e rt ing a D e c i mal N umb e r t o a N umb e r o f A n ot h e r Ba se Divi s i o n-R e main d e r M e t h od St e p 1: D i v i d e th e d e c i m a l nu mb e r t o b e co n v er t e d b y th e va l u e o f th e n e w b a se St e p 2: R e cor d th e r e m a i nd er f ro m St e p 1 as the the r i ghtm os t n e w b a s e d i g i t ( l e a s t s i g n i f i c a n t d i g it) of nu mb er St e p 3: D i v i d e th e qu o t i e nt of th e p re v i o u s d i v i d e b y the n e w b a se ( Cont i nu e d on ne x t sl i de)

C o nv e rt ing a D e c i mal N umb e r t o a N umb e r o f A n ot h e r Ba se ( Co nti n u ed f r o m pr e v i o u s s li de ..) St e p 4: R e cor d th e r e m a i nd e r f ro m St e p 3 as th e n e x t d i g i t (t o th e l e f t ) o f th e n e w b a s e nu mb er R e p e at St e p s 3 a n d 4 , re c or d i n g re m a i nd er s f r o m r i gh t t o l e f t , un t i l t h e qu o t i e n t b e co m e s z e r o i n St e p 3 N o t e th at th e l a s t re m a ind er thu s n e w o bt a i n e d w il l b e th e m o s t s i g n i f i c a n t d i g it ( M S D) o f th e b a s e nu mb er ( Cont i nu e d on ne x t sl i de)

C o nv e rt ing a D e c i mal A n ot h e r Ba se ( Co nti n u ed f r o m pr e v i o u s s li de ..) N umb e r to a N umb e r o f E xample 95 2 1 = ? 8 S o lu t i o n: 952 8 Re m a ind er s 7 6 1 H e n c e , 95 2 1 = 1 67 8 119 14 1

C o nv e rt ing a N u m b e r o f S o me Ba s e t o a N umb e r o f A n ot h e r Ba se M ethod St e p 1: C o n v er t t h e or i gin a l n u mb er t o a d e c i m a l nu mb e r (b a s e 10) St e p 2 : C o n v er t th e d e c i m al n u mb er s o o bt a i n e d t o th e n e w b a s e nu mb er ( Cont i nu e d on ne x t sl i de)

C o nv e rt ing a N u m b e r o f A n ot h e r Ba se ( Co nti n u ed f r o m pr e v i o u s s li de ..) o f S o me Ba s e to a N umb e r Ex a mp le 545 6 = ? 4 S o l u t i o n: St e p 1: C o n v er t f r o m b a s e 6 t o b a s e 10 5 4 5 6 = 5 x 6 2 + 4 x 6 1 + 5 x 6 = 5 x 3 6 + 4 x 6 + 5 x 1 = 18 + 2 4 + 5 = 20 9 10 ( Cont i nu e d on ne x t sl i de)

C o nv e rt ing a N u m b e r o f S o me o f A n ot h e r Ba se ( Co nti n u ed f r o m pr e v i o u s s li de ..) Ba s e to a N umb e r St e p 2: C o n v e r t 20 9 1 t o b a s e 4 4 R e m a i nd ers 1 1 3 H e n c e , 20 9 1 = 3 10 1 4 S o , 54 5 6 = 20 9 1 = 31 1 4 T hu s , 545 6 = 310 1 4 209 52 13 3

Lesson End

Thank you @ Eng.Abdulahi Mohamed
Tags