Commutation techniques in power electronics

52,601 views 28 slides May 02, 2013
Slide 1
Slide 1 of 28
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28

About This Presentation

No description available for this slideshow.


Slide Content

Thyristor commutation
Techniques
A. K. Gautam
By:
Aniruddha K. Gautam
AKGEC, Ghaziabad

Methods of Commutations
•Natural Commutations
•Forced commutations
A. K. Gautam

~
T
+
-
v
ov
s
R­ ­
Natural Commutation
•Occurs in AC circuits
•Natural Commutation of Thyristors takes place in
•AC voltage controllers.
•Phase controlled rectifiers.
•Cyclo-converters
A. K. Gautam

A. K. Gautam
wt
wt
wt
wt
S u p p l y v o l t a g e v
s
S i n u s o i d a l
V o l t a g e a c r o s s S C R
L o a d v o l t a g e v
o
T u r n o f f
o c c u r s h e r e
0
0
p
p
2p
2p
3p
3p
a
t
c
G a t e P u l s e
p + a
a p + a

Forced Commutation
•Applied to
•dc circuits
•Choppers
•Inverters.
•Commutation achieved by reverse biasing the
SCR or by reducing the SCR current below
holding current value.
•Commutating elements such as inductance and
capacitance are used for commutation purpose.
A. K. Gautam

Methods of Forced Commutation
•Self commutation.
•Resonant pulse commutation.
•Complementary commutation.
•Impulse commutation.
•External pulse commutation.
•Line Commutation.
A. K. Gautam

CLASS A COMMUTATION: LOAD COMMUTATION
OR
(SELF COMM.)
• When R is low : L & C connects in series with R
• When R is high : C connects in Parallel with R
• Useful for dc Circuits.
•System should be under damped.
•When energized from a dc source, current must have
a natural tendency to decay to zero.
•Change in direction of current make the thyristor
turn- off.
•Oscillating current flows.
•SCR is turned off when current is zero.
A. K. Gautam

Self commutation
•Circuit is under damped by including suitable values
of L & C in series with load.
•Oscillating current flows.
•SCR is turned off when current is zero.
A. K. Gautam
V
R L
V ( 0 )
c
C
T
i
L o a d
+ -

Expression for Current
A. K. Gautam
V
S
R S L
1
C S
V
C( 0 )
S
C
T I ( S )
+ +- -
Fig. shows a transformed network
()
()
()
()
()
2
2
1
0
1
0
1
0
C
C
C
CS V V
S
I S
RC
V V
S
I S
R SL
CS
C
S S LC
V V
R
LC S S
L LC
é ù-ë û
=
+ +
é
é ù-ë û
=
+
ù-ë û
=
é ù
+ +
ê
ë
+
ú
û
()
()
()
()( )
2
2 2
2
0
1
0
1
2 2
C
C
V V
L
I S
R
S S
L LC
V V
L
I S
R R R
S S
L LC L L
-
=
+ +
-
=
æöæö
+ ++ -
ç¸ç¸
èøèø

A. K. Gautam
()
()( )
( )
()( )
2 2
2
2 2
2
0
1
2 2
Where,
0 1
, ,
2 2
C
C
V V
A
L
I S
S
R R
S
L LC L
V V R R
A
L L LC L
d w
d w
-
= =
+ +é ù
æ ö æ ö
ê ú+ + -
ç ¸ ç ¸
è ø è øê ú
ë û
- æ ö
= = = -
ç ¸
è ø
()
( )
()
2
2
is called the natural frequency
Taking inverse Laplace transforms
sin
t
A
I S
S
A
i t e t
d
w
w
wd w
w
w
-
=
+ +
=

A. K. Gautam
()
()
()( )
2
Expression for current
0
sin
Peak value of current
0
R
t
C
L
C
V V
i t e t
L
V V
L
w
w
w
-
\
-
=
-
=
Expression For Voltage Across Capacitor At The Time Of
Turn Off
V
R L
V ( 0 )
c
C
T
i
L o a d
+ -

A. K. Gautam
()
()
()
Applying KVL to figure
Substituting for i,
sin sin
c R L
c
t t
c
v t V v V
di
v t V iR L
dt
A d A
v t V R e t L e t
dt
d d
w w
w w
- -
= - -
= - -
æ ö
= - - ç ¸
è ø
() ( )
() [ ]
()
()
sin cos sin
sin cos sin
sin cos sin
2
sin cos
2
t t t
c
t
c
t
c
t
c
A A
v t V R e t L e t e t
A
v t V e R t L t L t
A R
v t V e R t L t L t
L
A R
v t V e t L t
d d d
d
d
d
w w w d w
w w
w w w d w
w
w w w w
w
w w w
w
- - -
-
-
-
= - - -
= - + -
é ù
= - + -
ê ú
ë û
é ù
= - +
ê ú
ë û

A. K. Gautam
()
()( )
()
()( )
Substituting for A,
0
sin cos
2
0
sin cos
2
SCR turns off when current goes to zero.
i.e., at
C t
c
C t
c
V V R
v t V e t L t
L
V V R
v t V e t t
L
t
d
d
w w w
w
w w w
w
w p
-
-
- é ù
= - +
ê ú
ë û
- é ù
= - +
ê ú
ë û
=
()
()( )
( )
() ()
() ()
2
Therefore at turn off
0
0 cos
0
0
C
c
c C
R
L
c C
V V
v t V e
v t V V V e
v t V V V e
d p
w
d p
w
p
w
w p
w
-
-
-
-
= - +
é ù= + -ë û
é ù\ = + - ë û

A. K. Gautam
()
()
2
For effective commutation
the circuit should be under damped.
1
That is
2
With R = 0, and the capacitor initially uncharged
that is 0 0
sin
Note:
C
R
L LC
V
V t
i t
L LCw
æ ö
<
ç ¸
è ø
=
=
()
1
But
sin sin
and capacitor voltage at turn off is equal to 2V
Fig. shows the waveforms for the above conditions.
Once the SCR turns off voltage across it is
negative voltage.
LC
V t C t
i t LC V
L L LC LC
w=
\ = =

A. K. Gautam
C u r r e n t i
C a p a c i t o r v o l t a g e
G a t e p u l s e
V o l t a g e a c r o s s S C R
0 pp/ 2
wt
wt
wt
wt
V
-V
2 V

CLASS B COMMUTATION: Resonant-pulse commutation
T1: main thyristor.
TA: Auxiliary thyristor.
i
T1
: Current through thyristor.
i
C
: Capacitor current.
A. K. Gautam
•Series LC circuit connected across
thyristor ‘T’.
•Initially ‘C’ is charged to ‘V’ volts
with plate ‘a’ as positive.
•Current in LC oscillates when SCR is
ON.
•‘T’ turns off when capacitor
discharges through thyristor in a
direction opposite to I
L

Operations:
Mode 1:
•TA= OFF, T
1
= OFF
•Flow of current through C, current ic
starts flowing and C charges up to V
S
.
Mode 2:
•TA = OFF, T
1
= ON at t=0
•iT
1
= i
O

•When 0<t>t
1
V
C
= V
S
i
C
= 0
i
O
= I
O
i
T1
= i
O
Mode 3:
TA = ON, T
1
= ON at t=t
1
Current i
C
path : C→TA →L →C
C S P O
C
i V Sin t I Sin t
L
w w=- =-
1
C S O
V idt V Cos t
C
w= =ò
Mode 4:
T= t
2
+
TA= OFF , Vc= - Vs
Flow of resonant current: C→L →D →T
1
As well as Ic increases which is opp. To
T
1,
i
T1
=Io-Ic, begin to decrease.
When Ic- Io, i
T1
=0, means T1= off
Mode 5:
T
1
= OFF at t = t
3
Io flow through, C→L →D. Vc ↑ 0 → Vab
At t= t
4
, Vc ↑0 → Vs
®
A. K. Gautam

3 2
( )
o S o
C
I V Sin t t
L
w= -
1
3 2
1
( )
( )
o
Io
Sin
t t Ip
w
-
=
-
p s
C
I V
L
=
4 3
ab
c
O
V
t t t C
I
= - =
3 2
cos ( )
ab o
V Vs t tw= -
….(1)
….(2)
….(3)
….(4)
….(5)
Circuit turn=off time
Peak resonant current
A. K. Gautam

CLASS C Commutation: Complementary commutation
• One thy. Commutates another and vise-versa
Mode 1:
T
1
= ON , Load current dir
n:
Battery →R
1
→T
1
Battery →R
2
→ C→ T
1
Vc
Mode 2:
T
2
= ON, Cap
r
voltage appears as reverse bias
across T1, and turns it off.
Current dir
n
:
Battery →R1 → C→ T2
Battery →R2 → T2
S
V
¾¾®
A. K. Gautam

1 1
1
S
R
V
I I
R
@ =
2
2
S
o R
V
I I
R
@ =
When T1=ON at t = 0
or
1 2
1 1
1 1
( )
T C S R R
I i i V= - = +
V
C
changes from 0→V
S
2
( )
2
t
R CS
C
V
i e
R
-
=
2
( )
(1 )
t
R C
C S
V V e
-
= -
When t= t
+
So that V
T1
=Vc(t)
After transient condition, Vc =V
T2
= V
S
, i
C
=0, 1
1
S
T
V
i
R
=
When t= t
1
T
2
=ON, Vc (across T
1
) reverse and T
1
=OFF, V
T2
=0
A. K. Gautam

1T S
V V=-
1
2
S
C
V
i
R
=-
1 2
2 1
2
( )
T S R R
I V= +
,
,
• Applying KVL law:
1
1
C C S
Ri i dt V
C
+ =ò
• Laplace transformation:
1
( )1
( )
C S S
C
I S CV V
RI S
C S S S
é ù
+ - =
ê ú
ë û
• After taking inverse transformation
1
( )
1
2
( )
t
R CS
C
V
i t e
R
-
=
C
i= opposite direction , So that
1
( )
1
2
( )
t
R CS
C
V
i t e
R
-
=
• Again,
0
1
t
C S C
V V i dt
C
= +ò=
1
( )
1
21 t
R CS
C S
V
V V e
C R
-é ùæ ö
= + -ê úç ¸
è øë û
\
A. K. Gautam
ú
ú
û
ù
ê
ê
ë
é
-=
÷
÷
ø
ö
ç
ç
è
æ
-
12
2
CR
t
sc eVV

2 1
1 2
1
1
( )
2
SR R
S
T
V
T V
i
R
i
+
=
¾¾¾¾®
When T=t
2
transient condition are over now

V
T1
=Vs, ic=0, Vc=-Vs, V
T2
=Vs/R
2
, i
T1
=0
When T=t
3
T
1
= ON, T
2
= commutated
i
T2
=0, V
T2
=-Vs, V
T1
=0, ic=2Vs/R
2
i
T1
=
1 2
2 1
( )
SR R
V+
1
1
( )
1
0 1 2
tc
R C
T S
V V e
-
é ù= = -
ë û
1 1
ln(2)
C
t RC=
2 2
ln(2)
C
t R C=
Turn of T
2
at t
1,
capacitor voltage Vs suddenly appears as reverse biased across T
1
to
turn it off.
Turn off time for T
1
and T
2
A. K. Gautam

A. K. Gautam

CLASS D COMMUTATION: Impulse Commutation
In such type of commutation circuit , a main thyristor, a auxiliary thy.,and an inductor
is used.
Mode 1:
T
1
-ON , io flows through Battery →T
1
→load
Capacitor discharge dir
n
, T1 →D →L, Capacitor
charged with opp. Polarity, which is not allowed due
to diode.
sin sin
C S O P O
C
i V t I t
L
w w= =
1T C O
i i I= + (due to initial condition)
1T O P O
i I I Sin tw= +
1
O
LC
w
æ ö
=
ç ¸
è ø
A. K. Gautam

Ip= Peak capacitor voltage
0
1
off
t
L off
C L
i t
V i dt
C C
= =ò
L off
C
i t
C
V
=
Q
P S
C
I V
L
=
m 1
I ( )
P ax
I throughT<
m
I
S ax
C
V
L
<
2
2
m
I
ax
V C
L>
,
,
,
Mode: 2
,
TA-ON, T
1
-off, C discharges through TA →T
1,
when this current= i
O
→T
1
-off
At t=t
1
TA-ON, V
T1
= -V
S
, i
T1
=0
Now load current will flow through, C →TA
V
C
charges through –Vs to Vs
This method is called voltage commutation, due to T
1
turns off due to reverse
voltage application
A. K. Gautam

A. K. Gautam
External Pulse
Commutation (Class E Commutation)
V
S
V
A U X
L
C
T
1 T
3T
2
R
L
2 V
A U X
+
-

•This Method of commutation used a pulse obtain from a source external to the main
circuit or obtain from a pulse forming network fed by an auxiliary voltage source.
• The pulse is used to apply a reverse bias and turn off the thyristor.
• V
aux
Auxiliary voltage source
• L, C Oscillatory circuit to general a pulse.

Mode -1
•T
1
T
3
– ON, V
S
– Used to supply the current through load.
•A current pulse flows having a peak value Vaux √C/L from V
1
T
3
L
C to charge up to 2V
AUX


•When C is fully charged, Charging current tends to 0 , and T
3
turns off.
Mode -1
•T
2
ON ,
•Capacitor voltage appears as reverse bias across T
1
and turns it off.
•Capacitor C discharge through load.
A. K. Gautam

A. K. Gautam
•T
1
is conducting & R
L
is connected across supply.
•T
3
is fired & ‘C’ is charged to 2V
AUX
with upper plate
positive.
•T
3
is self commutated.
•To turn off T
1
, T
2
is fired.
•T
2 ON results in a reverse voltage V
S – 2V
AUX
appearing across T
1