compactification of quasi local algebra over lattice.pdf

junikeda0121 13 views 16 slides Oct 18, 2025
Slide 1
Slide 1 of 16
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16

About This Presentation

SURF seminar day (Oct 18, 2025), caltech


Slide Content

“spent eather
Jun. Tleda .,

Mentor + Covey Sones, Associate Mentor i Moctilde. Morcolli .
‘Our live

Le Appendix .
: Ackrowedye- ment:
ot Referens.

En Male) Male) | Mile) | Mele),

meme [Ea are
Ce Hatem bear |

is He algebra e on site ebsennbles, Por. n. spins, -

male) § ® Fr > mate) A Mato),

Graphical colons | |

| ; ce Mz le):

OFten,. . physical stas . restrict. observables to symmetric. . .

subaloebves . nn .

rs magnetic. “Feld: in. & direction , preserved. on-site...
| | observables | Fern. a Ur. spminenie. She.

Or AA

snm Bow & a + - spanL 1.04) eae mel, 190,0390,
Lie ee ee WR, , TAT, en)
. aa :
- Mile) ar na] Te A o Ea Spang 11,0%) oe
ME ja = | Re Male) is "ARE SR]
= span rn: Ie- ea” -eT, vaa 08 Le- a Te =) Li

> (m cm) en

Des si local algebra over à.

M each interval LS Z, we. e on og Aa st,

> conditions | tos veflect leony =

iat ee gil given ia ida” u C, 15%
Fees Wer ‚Can. CMS, le... o

In gu TR pre le cons ore poa on.
He ip ney | u

ats

Tn general, the relationship is. unclear. . .

over U... >. algebra over . Zt

(ei a) ‘obsevables with =. yo
Loire volume limit / . . ( peed. ari Cons

Ta Fusion. corespvical. examples. tc), we. have tube. olgebra. Tube(c) .

PHC): mr. A ele) over Z/k

or

‘Le G¢ E Te le, a) wd Lone 6) be. an finito ve Say =
Dres | ot 6 tut is “asyimproticaly re:

Then, “here is a. Functor | |

LI categpry oF lou)! presented” | =
re ee "|" As. à
Lee 5 ain à dab E . en

ina ba ma: L

Lemma 2 . . FT a:
Cp" e A a ds II
Un. Fusion .catesprical case, we - Com “party. recaer .
quasi local algebra From. its . Canpach fiction.) | | o

Me) mie). Mile) mle).

nnn Be te “nother.
After’ sufficiently: many : venomaligation CRG fu) épblied,

me: due CA TAFT as: hs tow energy dim.

Question ï. Which. Symmetries in . TAFT. is . present. in the...
aie mel in ee
hi bib Ta fesiow . ado dade’, BAR Sram Thm. L provides. : |
ns pail: cnegribe cortex +.

Def. Tim 1. Given. a | qua ~ Local . Algen 40 vow c..

ds a fusion ET the TRFT. is. described . by

: LE Danke. center. Ca broided ‘tensor en:

- BG) = Enh (6), ES Pop (ide 0).
egy ee he

Def: The. spmmetties in. TRET ore. braided . Tensor. omtoenuivolerces - .
.... BE Ke), EEE

. The. symmettios . in. ‚late. model . Ac) . ore.
2.22 bownded. puctomorphiags. „di. Ale) >. Ale). .

a la) Te‘
«| wey | er)

TE AU ee te: ||
To CT
RO IT Repke)
im
ES lo)

SEX + em. swop (ker | Womier Lies and its 7 :
ÓN “to . abelian. ‚onyon. +hewvies. ove. ner. “veslitable in
iii cc + generic # te) and er ep A. 3 &

- Out (Da) = AwlDe) Im (Da) is . vor . ealigable. In. .
a Denon lorice medel lc). for. Ca Rep Oe) |.

an Coitespry . consists & a. ES RE
m object D. “one.

| orows À omy Functions |:

es cond. morphisms . Sram

vous: linenr maps. [motrices ) |

Append a dy . Fusion | Corte sony. . Lee
Def A maneidal creer. is. a + Gatagery. in which We. ue | a
on binary re, m. objects . od morphisms . . o
petesory is. a monoidal ‚Category who a =
properties . Cie. ndwits . ~ Finitely many . angle en. ‚and every =
ji | is a sumo of simples). . | o o

Excounple . o

y Bee ps ove + pd :
€": €” o. Cer E : Po. x TD -:
FY La 2. [fes E la | Seg.

er. er. wen. re a
PER, Se binary operction Is . AE AIR o

‘(LB qvipped. with. Coherant -Asomerplisns, . dex y t (taz) ap

CS pe alta). -

kin gm

o o il PRIT A A quasi- Ba. À aps | on. ei
; | (D be. . uploueel . to. arXiv som.)

| arXiv ! 2304. 00068

orYıv.: 240113835 |

*. M. Müger crXiv 5 math/ 0111205.
“OP. canes . rk A
A

“Tensor catesories ”
Tags