rs magnetic. “Feld: in. & direction , preserved. on-site...
| | observables | Fern. a Ur. spminenie. She.
Or AA
snm Bow & a + - spanL 1.04) eae mel, 190,0390,
Lie ee ee WR, , TAT, en)
. aa :
- Mile) ar na] Te A o Ea Spang 11,0%) oe
ME ja = | Re Male) is "ARE SR]
= span rn: Ie- ea” -eT, vaa 08 Le- a Te =) Li
> (m cm) en
Des si local algebra over à.
M each interval LS Z, we. e on og Aa st,
> conditions | tos veflect leony =
iat ee gil given ia ida” u C, 15%
Fees Wer ‚Can. CMS, le... o
In gu TR pre le cons ore poa on.
He ip ney | u
ats
Tn general, the relationship is. unclear. . .
over U... >. algebra over . Zt
(ei a) ‘obsevables with =. yo
Loire volume limit / . . ( peed. ari Cons
Ta Fusion. corespvical. examples. tc), we. have tube. olgebra. Tube(c) .
PHC): mr. A ele) over Z/k
or
‘Le G¢ E Te le, a) wd Lone 6) be. an finito ve Say =
Dres | ot 6 tut is “asyimproticaly re:
Then, “here is a. Functor | |
LI categpry oF lou)! presented” | =
re ee "|" As. à
Lee 5 ain à dab E . en
ina ba ma: L
Lemma 2 . . FT a:
Cp" e A a ds II
Un. Fusion .catesprical case, we - Com “party. recaer .
quasi local algebra From. its . Canpach fiction.) | | o
Me) mie). Mile) mle).
nnn Be te “nother.
After’ sufficiently: many : venomaligation CRG fu) épblied,
me: due CA TAFT as: hs tow energy dim.
Question ï. Which. Symmetries in . TAFT. is . present. in the...
aie mel in ee
hi bib Ta fesiow . ado dade’, BAR Sram Thm. L provides. : |
ns pail: cnegribe cortex +.
Def. Tim 1. Given. a | qua ~ Local . Algen 40 vow c..
ds a fusion ET the TRFT. is. described . by
: LE Danke. center. Ca broided ‘tensor en:
- BG) = Enh (6), ES Pop (ide 0).
egy ee he
Def: The. spmmetties in. TRET ore. braided . Tensor. omtoenuivolerces - .
.... BE Ke), EEE
. The. symmettios . in. ‚late. model . Ac) . ore.
2.22 bownded. puctomorphiags. „di. Ale) >. Ale). .
a la) Te‘
«| wey | er)
TE AU ee te: ||
To CT
RO IT Repke)
im
ES lo)
SEX + em. swop (ker | Womier Lies and its 7 :
ÓN “to . abelian. ‚onyon. +hewvies. ove. ner. “veslitable in
iii cc + generic # te) and er ep A. 3 &
- Out (Da) = AwlDe) Im (Da) is . vor . ealigable. In. .
a Denon lorice medel lc). for. Ca Rep Oe) |.
an Coitespry . consists & a. ES RE
m object D. “one.
| orows À omy Functions |:
es cond. morphisms . Sram
vous: linenr maps. [motrices ) |
Append a dy . Fusion | Corte sony. . Lee
Def A maneidal creer. is. a + Gatagery. in which We. ue | a
on binary re, m. objects . od morphisms . . o
petesory is. a monoidal ‚Category who a =
properties . Cie. ndwits . ~ Finitely many . angle en. ‚and every =
ji | is a sumo of simples). . | o o
Excounple . o
y Bee ps ove + pd :
€": €” o. Cer E : Po. x TD -:
FY La 2. [fes E la | Seg.
er. er. wen. re a
PER, Se binary operction Is . AE AIR o
‘(LB qvipped. with. Coherant -Asomerplisns, . dex y t (taz) ap
CS pe alta). -
kin gm
o o il PRIT A A quasi- Ba. À aps | on. ei
; | (D be. . uploueel . to. arXiv som.)
| arXiv ! 2304. 00068
orYıv.: 240113835 |
*. M. Müger crXiv 5 math/ 0111205.
“OP. canes . rk A
A