Compound angle formulae intro

ShaunWilson10 1,251 views 18 slides Feb 18, 2016
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

Compound Angle Formulae


Slide Content

Block 2
Compound Angle Formulae
Introduction

What is to be learned?
•How to “break brackets” with trig stuff.
•How to be cunning as a fox

00
00
30 30
00
4545
00
60 60
00
90 90
00
sin
cos
tan
0
π
/
2
π
/
3
π
/
4
π
/
6
degrees
rads
0 1
½
1
/
√2

√3
/
2
1
√3
/
2
1
/
√2
½ 0
0
1
/
√3 1√3 ∞
Need to Know!

Breaking Brackets Trig Style
Cos(A + B)
= CosA + CosB ??
Cos(30
0
+ 60
0
)
= Cos30
0
+ Cos60
0
= √3
/
2
+
1
/
2

= Cos(90= Cos(90
00
))= 0= 0

In Fact
Cos(A + B) =
Cos(30
0
+ 60
0
) =
Cos 90
0
CosA CosBCosA CosB– SinA SinBSinA SinB
Cos30Cos30
00
Cos60 Cos60
00
– Sin30Sin30
00
Sin60 Sin60
00
= =
√3√3
//
22 X X
11
//
22 –
11
//
22 X X
√3√3
//
22
= =
√3√3
//
44 –
√3√3
//
44
= 0= 0

Also
Cos(A – B) =
Cos(A + B) =
Cos(A B) =
CosA CosBCosA CosB+ SinA SinB+ SinA SinB
CosA CosBCosA CosB– SinA SinBSinA SinB
CosA CosBCosA CosB SinA SinBSinA SinB++
– ++

Very Common Question
Cos P =
5
/
13
Sin Q =
1
/
√ 5
Cos(P – Q)?
=CosP CosQ + SinP SinQ
Must be cunning
PP
OO
HH
AA
AA
HH
55
1313
??
??
22
= 13 = 13
22
– 5 5
22
??
22
= 144 = 144
? = 12? = 12
1212
Sin P = Sin P =
1212
//
1313
√√ √√???? √√

Very Common Question
Cos P =
5
/
13
Sin Q =
1
/
√ 5
Cos(P – Q)?
=CosP CosQ + SinP SinQ
Must be cunning
PP
OO
HH
AA
55
1313
??
22
= ( = (√5)
22
– 1 1
22
??
22
= 5 = 5 – 1 1
??
22
= 4 = 4
1212
Cos Q = Cos Q =
22
//
√5√5
√√ √√√√
Q
1
√5
? = 2
2
√√
Sin P = Sin P =
1212
//
1313
??

Very Common Question
Cos P =
5
/
13
Sin Q =
1
/
√ 5
Cos(P – Q)?
=CosP CosQ + SinP SinQ
=
5
/
13
X
2
/
√5
+
12
/
13
X
1
/
√5
= 10 + 12
Cos Q = Cos Q =
22
//
√5√5
√√ √√√√√√
Sin P = Sin P =
1212
//
1313
13√5 13√5
= 22
13√5

Compound Angle Formulae
Cos(A – B) =
Cos(A + B) =
On Formula Sheet as
Cos(A B) =
CosA CosBCosA CosB+ SinA SinB+ SinA SinB
CosA CosBCosA CosB– SinA SinBSinA SinB
CosA CosBCosA CosB SinA SinBSinA SinB
++
– ++

Very Common Question
Cos P =
15
/
17
Sin Q =
2
/
√ 13
Cos(P – Q)?
=CosP CosQ + SinP SinQ
PP
OO
HH
AA
AA
HH
1515
1717
??
??
22
= 17 = 17
22
– 15 15
22
??
22
= 64 = 64
? = 8? = 8
88
Sin P = Sin P =
88
//
1717
√√ √√???? √√

Very Common Question
Cos P =
15
/
17
Sin Q =
2
/
√ 13
Cos(P – Q)?
=CosP CosQ + SinP SinQ
PP
OO
HH
AA
55
1313
??
22
= ( = (√13)
22
– 2 2
22
??
22
= 13 = 13 – 44
??
22
= 9 = 9
1212
Cos Q = Cos Q =
33
//
√13√13
√√ √√√√
Q
2
√13
? = 3
3
√√
Sin P = Sin P =
88
//
1717
??

Very Common Question
Cos P =
15
/
17
Sin Q =
2
/
√ 13
Cos(P – Q)?
=CosP CosQ + SinP SinQ
=
15
/
17
X
3
/
√13
+
8
/
17
X
2
/
√13
= 45 + 16
Cos Q = Cos Q =
33
//
√13√13
√√ √√√√√√
Sin P = Sin P =
88
//
1717
17√13 17√13
= 61
17√13

Sin A =
4
/
5
, Cos B =
3
/
√10
Find the value

of Cos (A + B)
Using triangles Cos A =
3
/
5
, Sin B =
1
/
√10
Cos (A + B) = CosA CosB – SinA SinB
=
3
/
5
X
3
/
√10

4
/
5
X
1
/
√10
=
9
/
5√10

4
/
5√10
=
5
/
5√10
=
1
/
√10
Key Question

Other Common Type Question
Exact value of cos 75
0
?
Angles that we do know
0 30 45 60 90
But not 75
cos75
0
=cos(30
0
+ 45
0
)
=cos 30
0
cos 45
0
– sin 30
0
sin 45
0
=
+
√3
/
2
X
1
/
√2– ½ X
1
/
√2
= √3
2√2
– 1
2√2
= √3 – 1
2√2

Other Common Type Question
Exact value of cos 15
0
?
Angles that we do know
0 30 45 60 90
But not 15
cos15
0
=cos(60
0
– 45
0
)
=cos 60
0
cos 45
0
+ sin 60
0
sin 45
0
=
1
/
2
X
1
/
√2+
√3
/
2
X
1
/
√2
= 1
2√2
+ √3
2√2
= 1 + √3
2√2
Usually need
to rationalise
denominator

Exact value of cos 105
0
?
=cos(60
0
+ 45
0
)
=cos 60
0
cos 45
0
– sin 60
0
sin 45
0
= –
√3
/
2
X
1
/
√2
½ X
1
/
√2
= 1
2√2
– √3
2√2
= 1 – √3
2√2
Key Question 2

Working Backwards
Cos(A – B) =CosA CosBCosA CosB+ SinA SinB+ SinA SinB
Cos(R – P) =CosR CosPCosR CosP+ SinR SinP+ SinR SinP
CosM CosGCosM CosG+ SinM SinG+ SinM SinGCos(M – G) =
Cos70Cos70
00
Cos10 Cos10
00
+ Sin70+ Sin70
00
Sin10 Sin10
00
Cos(70 – 10) =
= Cos60
0

= ½
Tags