Computational Thinking : Course Overview

ssuser88c564 102 views 47 slides Sep 29, 2024
Slide 1
Slide 1 of 47
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47

About This Presentation

Computational Thinking


Slide Content

Pertemuan #01: Course Overview & CT Concepts Catherine Olivia Sereati - FT Unika Atma Jaya FTA 101 BERPIKIR KOMPUTASIONAL Team Dosen : Dr. Ir. Catherine Olivia Sereati., ST., MT Gregorius Airlangga ., PhD Julius Bata., S.Kom ., M.Kom

Agenda RPS, Kontrak Kuliah Gambaran kuliah Konsep Berpikir Komputasional

RPS & Kontrak Kuliah

RPS Deskripsi Mata Kuliah Kemampuan menyelesaikan persoalan membutuhkan cara berpikir yang terstruktur. Berpikir komputasional merupakan cara berpikir terstruktur yang terdiri dari beberapa konsep seperti dekomposisi, abstraksi , pengenalan pola dan algoritma . Mata kuliah Berpikir Komputasional memberikan pengenalan terhadap konsep – konsep berpikir komputasional, menggunakan konsep – konsep tersebut untuk menyelesaikan persoalan serta menerapkan dalam komputer. Pada m ata kuliah ini mahasiswa akan mempelajari bagaimana menggunakan dekomposisi, abstraksi, pengenalan pola, dan algoritma untuk menyusun suatu solusi permasalahan . Selain itu Mahasiswa juga akan dikenalkan dengan bahasa pemrograman untuk mengimplementasi solusi yang dibuat. Computational Thinking

RPS Capaian Pembelajaran Mahasiswa mampu mengemukakan pendapat secara tertulis secara lisan dan bekerja secara individu atau berkelompok Mahasiswa mampu menyusun algoritma dalam menyelesaikan suatu permasalahan Mahasiswa mampu membuat program komputer sederhana menggunakan Bahasa Pemrograman Mahasiswa mampu menerapkan konsep berpikir komputasional pada suatu studi kasus sederhana Asesmen : Tes kinerja ( praktik ) dan Tugas ( proyek akhir ) Komposisi nilai : UTS : 20 % UAS : 25 % Tugas : 55 %

RPS Topik Course Overview, Programming Language Programming Language Basic program structure: control constructs and data types CT concepts – Abstraction CT concepts – Decomposition CT concepts – Pattern recognition CT concepts – Algorithm Program structure: Function Program structure: Testing & Debugging Case Study

Perkuliahan Kuliah tatap muka (teams atau gather.town ), elearning.atmajaya.ac.id Mahasiswa diharapkan mencoba latihan selama dikelas dan latihan mandiri Blended Gamified + game-based learning + active class-room

Konsep Berpikir Komputasional

Pillars of Computational Thinking 9 P r o pe r t y o f P e nn E n g i n e e r i n g

What is computational thinking? Computational thinking refers to the thought processes involved in expressing solutions as computational steps or algorithms that can be carried out by a computer. ( Cuny , Snyder, & Wing, 2010; Aho , 2011; Lee, 2016). From Digital Promise: https://digitalpromise.org/initiative/computational-thinking/computational-thinking-for-next-generation-science/what-is-computational-thinking/

Breaking a complex problem into more manageable sub-problems Putting the solutions to the sub- problems together gives a solution to the original, complex problem 11 P r o pe r t y o f P e nn E n g i n e e r i n g D e c omp o s i t i on

Decomposition: Outlining a Paper Introduction 12 P r o pe r t y o f P e nn E n g i n e e r i n g Conclusion Bo dy

Mapping the Earth 13 P r o pe r t y o f P e nn E n g i n e e r i n g

Collecting the Data 14 P r o pe r t y o f P e nn E n g i n e e r i n g

Stitching the Images 15 P r o pe r t y o f P e nn E n g i n e e r i n g

Functionality: Zoom and Search 16

Pattern Recognition

F i n di n g s i m il a riti e s o r s h a r e d characteristics within or between problems Makes the problem easier to solve since the same solution can be u s ed f o r eac h o cc u r r e n ce o f t h e pattern 18 Property of Penn Engineering Pattern Recognition

Pattern Recognition Drawing Dogs 19 Property of Penn Engineering

Pattern Recognition Drawing Different Dogs 20 Property of Penn Engineering

Social Media Site: Photo Albums M e t a d a ta Name(s) Date Location ... Photo A lbum C o m p r e s s 21 Property of Penn Engineering Data S e r v er 👤👤 👤👤 👥👥 👤👤 👤👤 👥👥 👥👥

Data Compression 5 3 1 2 1 2 2 22 Property of Penn Engineering

Data Compression : problem example

Data Representation & Abstraction

Determining what characteristics of the problem are important and filtering out those that are not Use these to create a representation of what we are trying to solve 25 P r o pe r t y o f P e nn E n g i n e e r i n g Data Representation & Abstraction

Important: name and billing address student id on-campus address phone number ... 26 P r o pe r t y o f P e nn E n g i n e e r i n g Not Important: favorite color shoe size food preferences ... Data Representation: Students

Important: author list title ISBN publication date edition category ratings summary ... 27 P r o pe r t y o f P e nn E n g i n e e r i n g Not Important: color of the cover birthplace of authors complete contents of the book … Data Representation: Books

ALGORITHMA

Fill electric tea kettle Bring it to a boil Pour hot water in cup Put teabag in cup Steep for 4 minutes Remove teabag 29 Property of Penn Engineering Making a Cup of Tea

Step- by- step instructions of how to solve a problem Identifies what is to be done (the instructions), and the order in which they should be done. 30 Property of Penn Engineering Algorithms

Often expressed as something humans understand Eventually translated into sequences of computer instructions For example, we will discuss “coding” algorithms using Python 31 Property of Penn Engineering What is an Instruction?

Simple Flowchart Instruction1 Instruction2 32 Property of Penn Engineering

Flowchart: Making a Cup of Tea Start Stop Fill electric kettle with water Boil water Fill cup with hot water Put teabag in cup Let steep for 4 minutes Remove teabag 33 Property of Penn Engineering

Flowchart: Making a Cup of Herbal or Black Tea type = “black”? Stop Start Input: “black” or “herbal” tea? Fill electric kettle with water yes Store input in variable type Temperature = 212 Steep = 4 Temperature = 180 Steep = 5 Heat water to value of temperature °F Let steep for value of steep minutes Remove teabag no Put type teabag in cup 34 Property of Penn Engineering

Flowchart: Making a Cup of Tea, Revisited Start Stop Fill electric kettle with water Boil water Fill cup with hot water Put teabag in cup Let steep for 4 minutes Remove teabag 35 Property of Penn Engineering

Flowchart: Making a Cup of Tea Efficiently Fill electric kettle with water Boil water Fill cup with hot water Stop Put teabag in cup Start 36 Property of Penn Engineering

Case Studi : Writing Paper

Dekomposisi Abstraksi Pengenalan pola Algoritma Problem : Menulis artikel / makalah Step 1 st

Dekomposisi Abstraksi Pengenalan pola Algoritma Problem : Menulis artikel / makalah Makalah Introduction Body Conclusion

Dekomposisi Abstraksi Pengenalan pola Algoritma Problem : Menulis artikel / makalah Makalah

Dekomposisi Abstraksi Pengenalan pola Algoritma Problem : Menulis artikel / makalah Makalah referensi

Dekomposisi Abstraksi Pengenalan pola Algoritma Problem : Menulis artikel / makalah Algoritma menulis makalah Menentukan ide pokok makalah Mencari dan membaca makalah referensi Menulis paragraf pembuka Menulis beberapa paragraf isi pembahasan Menulis kesimpulan Membaca seluruh makalah Jika ada kesalahan , kembali ke Langkah 3, jika tidak lanjut langkah 8 selesai

Case studi 2: https://www.coursera.org/learn/compthinking/lecture/u1EfA/introduction-to-the-graphic-organizer

Assignment : Make algorithma for case study 2

De c o m p o s i t i on : b r ea k in g d o w n a co mpl e x p r o bl e m in t o sm a ll e r p a r t s Pattern recognition: finding the similarities among smaller problems Data representation and abstraction: describing data in a structured manner and generalizing details A l gor i th m s : s tep b y s t e p ins t r uc t i o ns f o r sol v in g t h e p r o b l em 45 P r o pe r t y o f P e nn E n g i n e e r i n g Conclusion Pillars of Computational Thinking

Next Intro to Programming Language

References : Computational Thinking for Problem Solving University of Pennsylvania https://www.coursera.org/learn/compthinking/lecture/ Problem Solving Using Computational Thinking University of Michigan https://www.coursera.org/learn/compthinking/home/module/1
Tags