BIRSA AGRICULTURAL UNIVERSITY
Protected Cultivation and Secondary
Agriculture
LECTURE 8: COOLING AND HEATING OF GREENHOUSE
BY
DR. PRAMOD RAI
DEPARTMENT OF AGRICULTURAL ENGINEERING
Why Greenhouse cooling is needed
Solarradiationisthe“heatinput”fortheearth.
Upto85%ofthisradiationmayenterthegreenhouse(mostoftheIRheat
becomestrappedinsideandgreatlyincreasesthegreenhousetemperature).
Aneffectcausedbytheexistenceofacovercharacterizedbyitslow
transparencytofarinfraredradiation(emittedbythecrop,thesoilandthe
innergreenhouseelements),butitshightransparencytosunlight.
Aconfinementeffect,resultingfromthedecreaseintheairexchangeswith
theoutsideenvironment
Mechanismisneededtoremovethistrappedheat.
Fig. 1: Working of GH
GH cooling
GH Cooling Systems
1. Ventilation 2. Evaporative Cooling 3. Heat Prevention 4. Composite System
1.1. Natural
Ventilation
1.2. Forced
Ventilation
2.1. Fan-Pad System
2.2. Fog/Mist System
2.3. Root
Evaporative Cooling
3.1. Shading
3.2. Radiation Filters
3.2.1. NIR-
Reflecting Film
Covers
3.2.2. Fluid
RoofCovers
4.1. Earth-to-Air Heat
Exchanger System
(EAHES)
4.2. Aquifer Coupled
Cavity Flow Heat
Exchanger System
(ACCFHES)
2.1 Fan-pad system
Thissystemconsistsofafanononesidewallandpadon
theothersidewalloftheGH.
Theprincipleofevaporativecoolingisappliedby
runningawaterstreamoverthepadandconsequent
withdrawalofairthroughitbyfansontheoppositeside.
Theairbecomescooleranditshumidityisalsoraised.
Moreeffectivewhenoutsideairhumidityislow.
Fig. 5: Pad (left) and fan (right) greenhouse cooling system
Evaporative cooling
GenerallythesystemperformanceofEC
processcanbebasedonthesaturationefficiency
Where
T
dbin= The dry bulb T at inlet,
0
C
T
dbout= The dry bulb T at outlet,
0
C
T
wbin= The wet bulb T at inlet,
0
C
Leaving air condition
T
dbout= T
dbin–η
sat(T
dbin–T
wbin)
Air flow rates
ThemassflowrateofairthroughtheECisa
functionoftheairvelocityandiscalculatedon
thebasisoffrontalareaofthecooler.Thedensity
andvelocityofairattheentry.Themassflow
rateofair,m
a
m
a= ρAV
a
Where,
ρ = density of air at the entry of the cooler, kg/m
3
A = frontal area of the cooler’s opening, m
2
V
a= air velocity at the entry of the cooler, m/s
Cooling capacity
Thecoolingcapacity
Q
c = m
ac
p(T
dbin–T
dbout)
Where,
c
pis the specific heat capacity of air
Water consumption
Thewaterconsumptionisessentialbecauseitindicates
theamountofwaterneededtooperatethesystem
Q
Co=m
a(H
2 H
1)
Where,
H: Humidity ratio
2.2 Fog/misting system
Itisbasedonsprayingwaterassmalldroplets(dropletdiameterof2–
60micrometers)withhighpressurenozzles.
Coolingisachievedbyevaporationofdroplets.Freefallvelocityof
thesedropletsisslowandtheairstreamsinsidetheGHeasilycarry
thedrops.
Thiscanresultinhighefficiencyofwaterevaporationcombinedwith
keepingthefoliagedry.
ProvidesmoreuniformspatialairtemperatureandRHthanfan-pad
system.Lessexpensivetoinstallandoperate.
Fig. 6: Fog system used for greenhouse cooling
2.3 Roof evaporative cooling
Itissprinklingofwaterontoasurfaceoftheroof
soastoformathinlayer,whichresultsinan
increaseofthefreewatersurfaceareaand
consequentlyincreasestheevaporationrate.
Thiscausesthewatertemperaturetofalltothe
wetbulbtemperatureofthecloselysurrounded
air.
Fig. 7: Roof sprinkling of water
Infrared (IR) Additive
Minimizetemperaturefluctuation:
Duringtheday,slightlydecreasestemperatureinsideGHby
blockingnearinfraredradiation(NIR:700-3000nm).Itisthepartof
thesolarspectralthatishardlyusedbytheplantsforphotosynthesis;
itismostlysubstitutedintoheat(sensibleandlatent)intheGH.This
canbeanadvantageinacountrywithacolderclimateanda
disadvantageinaGHlocatedinwarmcountry.
Duringthenight,increasestemperatureinsideGH,bycreatinga
barriertofarinfraredradiation(FIR:3000-100000nm)reflectedby
thesoil.Itisnotcausedbydirectsunradiation,butitisheatradiation
transmittedbyeachheatbodyintheGH.Thisradiationisvery
importantinGH;sinceitcausesapartofthegreenhouseeffect.
Fig. 10: Working of IR additive in GH film
3.2.1 NIR-reflecting film covers
TheNIR(700-3000nm)canberejectedbyapplying
absorption,reflection,orinterferencepigmentstothe
polymerduringmanufacturingthecoveringmaterials.
Fig. 11: Working of NIR-reflecting film cover
Fig. 12: Low cost natural ventilated GH with NIR-reflecting film cover
Earthactsasourceorsink
HighthermalInertiaofsoilresultsin
airtemperaturefluctuationsbeing
dampeneddeeperintheground
UtilizesSolarEnergyaccumulatedin
thesoil
Cooling/Heatingtakesplaceduetoa
temperaturedifferencebetweenthe
soilandtheair
Earth-to-airheatexchangesystem(EAHES):Principle
Fig. 15: Variation of temperature with soil depth
EAT can be used in either:
Closed loop system
Open loop system
Open Loop system:
Outdoor air is drawn into tubes and delivered to
AHUs or directly to the inside of the building
Provides ventilation while hopefully cooling or
heating the building interior
Improves IAQ
Closed Loop system:
Interior air circulates through EATs
Increases efficiency
Reduces problem with humidity condensing
inside tubes.
Tube Arrangement
Fig. 16: Tube arrangement in Earth-to-air heat exchange system
Calculating benefits from EAT is difficult due to:
Soil Temperatures
Conductivity
Performance of EAT can be calculated as:
where;
T
o= Inlet Air Temperature
T
o(L) = Outlet Air Temperature
T
s= Undisturbed ground temperature
EAHES Efficiency
COP based on:
Amount of heating or cooling done by EAT (Heat
Flux)
Amount of power required to move the air through
the EAT
Q = Heat flux
W = Power
COP decreases as system is operated
COP can be integrated into system control strategies
When COP down to a certain point, EAT should be shut
down and conventional system should take over
Co-efficient of performance (COP)
GH Heating
GH Heating Systems
1. Passive 2. Active
1.1. Water Storage
1.2. Latent Heat Storage
Material
1.3. Rock Bed Storage
1.4. North Wall Storage
2.1.Heating 2.2. Radiant Heat
System
2.3. Composite System
2.1.1. Local
2.1.2. Central
2.3.1. Earth-to-Air Heat
Exchanger System (EAHES)
2.3.2. Aquifer Coupled Cavity
Flow Heat Exchanger System
(ACCFHES)
Need for GH Heating
Temperatureisoneofthemostimportantfactors
intheproductionofhorticulturalcrops.
Solarenergyonsunnydaysisoftenenoughto
keepaGHwarm,evenincoldweather.
Duringthenighttime,airtemperatureinsideGH
decreases.
TheheatisalwayslostfromtheGHwhenthe
surroundingsarerelativelycooler.
TherequirementsforheatingGHdependonthe
rateatwhichtheheatislosttotheoutside
environment.
Mechanism of Heat Loss
Mostheatislostbycoveringmaterialbyconduction.
Differentmaterials,suchasaluminumbars,glass,polyethylene,
andcementpartitionwalls,varyinconductionaccordingtothe
rateatwhicheachconductsheatfromthewarminteriortothe
colderexterior.
Spacesbetweenpanesofglassandventilatorsanddoorspermit
thepassageofwarmairoutwardandcoldairinward.
About10%oftotalheatlossfromastructurallytightglassGH
occursthroughinfiltrationloss.
AthirdmodeofheatlossfromaGHisthatofradiation.
Fig. 17: Heat loss from GH
Control of Heat Loss
Variousmethodsareadoptedtoreducetheheatlosses,
viz.,usingdoublelayerpolyethylene,thermopane
glasses.
Thereareonlylimitedwaysofinsulatingthecovering
materialwithoutblockingthelighttransmission.
Adeadairspacebetweentwocoveringsappearstobe
thebestsystem.Asavingof40%oftheheat
requirementcanbeachievedwhenasecondcovering
inapplied.
ForexampleGHcoveredwithonelayerof
polyethyleneloses,6.8Wofheatthrougheachsquare
meterofcoveringeveryhourwhentheoutside
temperatureis1
o
Clowerthantheinside.
1.1 Water Storage
TheheatstoragesystemcanbeplacedinsidetheGH,inplastic
bagsfilledwithwater.Watercontainersusedassolarcollectorand
heatstorage.
Thesystemabsorbandtraptheincidentsolarradiationduringthe
day.Duringthenight,thestoredheatisreturnedtotheinteriorby
naturalconvectionorradiation.
Fig. 18: Passive solar GH with water storage in (a) plastic bags
and (b) water containers
1.2 Latent heat storage material
Latentheatmaterialsareanalternativeheatstoragemediumandlike
CaCl
2
.
6H
2O(withameltingtemperatureof29.7
o
Candalatentheatof170
kJ/kg)havebeensuccessfullyusedinmanyGH.
Heatisabsorbedbythelatentheatstoragematerialandstoredforlater
use.Thematerialchangesphaseduringthisprocess.Atnight,coldair
frominsidetheGHiscirculatedthroughthestorageandisheatedbefore
returningintotheGH.Thelatentheatmaterialthenreturnstoitsinitial
solidphase.Thisprocessmayresultinahumidityincreaseduringthe
nightperiods.
Fig. 19: GH with rock bed storage
1.3 Rock Bed Storage
Apopularandeconomicalheatstoragematerialisarockbed,
whichconsistsof20-100mmdiametergravel.Thestorageareais
placeundertheGHatadepthvaryingbetween40-50cm.
Duringtheday,excessheatistransferredfrominsidetheGHtothe
undergroundstore.AventilatorcanbeusedtotransportGHair
(usingafanatarateof5m
3
/minm
2
)totheheatstoragearea.
Atnight,theprocessisreversed.Thecoolairismovedthroughthe
store,whereheatistransferredfromthegraveltothecolderairand
thenreturntotheGH.
Fig. 20: Passive solar GH with latent heat storage material
1.4 North wall storage
Toreduceconstructioncostresultingfromtheimplementationof
theprevioussystems,itispreferabletouseinsulatedsidesfor
reducingheatlossesandanorthstoragewall.
Thiswallisexternallyinsulatedandinternallypaintedblackwhich
operatesasaheatstorage.
Asimple,northsidestoragewallisofsmallcostandapplicableto
commercialapplicationwheretheheatingneedsarenotveryhigh.
Fig. 21: Passive solar GH with north wall storage
Heating needs
TherearevariouswaystocalculateGHheatingneeds(Hg)(W).
Thesimplestis
H
g= UA (T
i-T
o) (1)
Where
U = heat loss coefficient (W m
-2
K
-1
)
A = exposed greenhouse surface area (m
2
)
T
i= inside air temperature (K)
T
o= outside air temperature (K)
NotethattheestimationofGHheatingneedsusingEquation1did
nottakeintoaccountheatlossduetoleakage.Howeveritisa
simpleformulawhichcanbeusedinordertoestimateheating
needsaccordingtotheGHcoveringareaandthedesired
temperaturedifferencebetweeninsideandoutsideair.
Types of Heating system
2.1.1Localheatingsystems:Itareusuallyplaced
atoneendoftheGH.Theycanbeunitheaters,
convectionheatersorradiantheaters.Localheating
systemsaremoresuitableforsmallerGH.
2.1.2Centralheatingsystems:Itconsistofa
boilerinacentrallocation.Boilersheatwithsteam
orhotwaterandcanburnavarietyoffuels.Itis
usedmostcommonlyinlargercommercialGHdue
tocost.
Function of GH heating
TherearefourfunctionsthatmustoccurtoheataGH:
Conversionoffueltoheatenergy:Theconversionoffuel
toheatenergyistypicallyaccomplishedthrough
combustionwithaburnerinstalledinaboilerorheater
combustionchamber.
Distributionoftheheatenergy:Theheatenergyisthen
distributedthroughtheGHthroughpipes,ducts,tubes,
orair.
Transferoftheheatenergy:Oncetheenergyis
distributed,itmustthenbetransferredtotheplantsand
soilbyconvection,conduction,orradiation.
Conversionoftheheatenergyintouseableheatbythe
plant:Finally,oncetransferredtotheplantsandsoil,
theymustinturnabsorbitsenergyandconvertitto
usableheat.
Reason for using Unit heaters
Theyprovidetheaircirculationneededandcanbe
usedinconjunctionwithventilationsystems.
Theycanprovideuniformbenchtoptemperatures
andunderthebenchtemperature.
Theyarecomparativelytheleastexpensiveand
quickresponsetotemperaturechanges.
Theyareeasytoinstallandofferinexpensive
expansionforadditions.