CPP-Propulsors-ESD (1)_101528.pdf

RohitKumar234819 234 views 43 slides Apr 29, 2023
Slide 1
Slide 1 of 110
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110

About This Presentation

Marine propulsion


Slide Content

Controllable Pitch Propellers

Introduction
Fixed Pitch Propeller
Controllable Pitch Propeller
Vary RPM
Vary RPM & Pitch

Controllable Pitch Propeller
Open Water Diagram
J
K
T
??????
??????
10 K
Q

Controllable Pitch Propeller
Advantages
❑Full power of the machinery can be utilized in different operation conditions.
❑Better acceleration, stopping and manoeuvring characteristics.

Controllable Pitch Propeller
Advantages
❑Propulsionpointcanbeoperatedatoptimumefficiencyfor
alargerangeofshipspeedsanddisplacements.
❑Non-reversingenginescanbeused(ifpitchcanbe
reversed),reducingcost,weight,andspace.

Controllable Pitch Propeller
Advantages
❑Can produce high astern thrust at higher efficiency.
❑Damaged blades can be replaced conveniently.

Controllable Pitch Propeller
Disadvantages
❑High initial cost and maintenance costs
❑Complicated pitch control mechanism

Controllable Pitch Propeller
Disadvantages
❑Large boss length and diameter-reduces efficiency
❑Pitch distribution optimized at design pitch does not remain
optimum when pitch is changed.

Controllable Pitch Propeller
Disadvantages
❑Blade area limited to enable pitch reversal resulting in thicker blades.
Influences cavitation and efficiency
❑Efficiency at design point is lower than fixed-pitch propeller due to
larger boss diameter (typical ratio: 0.24 -0.32).

Applications
❑Full power operations in widely different speed regimes
❑Acceleration and stopping capability
❑Non-reversing propulsion machinery
Example: Tugs, Trawlers , Ferries, Warships
VIDEO

Problem
A5-bladedcontrollablepitchpropellerhasaconstantpitchratioof0.8(atallradii)at
aparticularsetting.Duetochangeinoperationconditions,thepropellerpitchis
changedasfollows:
Case-1:Pitchincreasedbyturningthebladesthroughanangleof10degrees.
Case-2:Pitchdecreasedbyturningthebladesthroughanangleof5degrees.
Findthepitchratiosatthebladeradialsections-
r/R=0.3,0.5,and0.8forthetwonewpitchsettings(Case-1andCase-2).

Propellers on Inclined Shaft

Propellers on Inclined Shaft
Itisrequiredtoinclinethepropellershaftsin
certaincases,especiallyinsmallvesselsin
ordertogetsufficientspaceandclearancefor
thepropellerfromtheshiphull.

Propellers on Inclined Shaft
Shaft inclination gives rise to unsteady propeller forces.
V
A:Speedofadvance
V
AP:Componentalongpropelleraxis
V
NP:Componentnormaltopropelleraxis
V
A
V
AP =V
A cos Ψ
V
NP =V
A sin Ψ

Propellers on Inclined Shaft
Considering the blade at an angle θ:
V
TP = -V
NP sin θ= = -V
A sin Ψsin θ
V
A
V
NP
[Tangential Velocity Component]
2ϖr n’(θ)= 2ϖrn+ V
TP

Propellers on Inclined Shaft
T
H:Pushesthevesselforward
T
V:Resultsinatrimmingmoment
T
H
T
V
For moderate shaft inclinations the fluctuations
of thrust and torque are small.

Unconventional Propulsors

Introduction
Propellers:
ConventionalScrewPropeller
Propulsors:
Generaltermforpropulsiondevicesincludingunconventionaltypes

Introduction
Unconventional Propulsors:
▪Especiallyusedforcriticalapplications-
Fastvessels,restrictedpropellerdiameter,highmanoeuvrabilityrequirement
▪Reducedemissionofgreenhousegasesfromshippingoperations-
Improvementofpropulsionefficiency
▪Reductionofcavitation,vibration,andnoise

Introduction
Why do we use Unconventional Propellers ?
To improve the propeller performance and thereby:
Reduce Cavitation
Minimize vibration and noise level
Improve Propulsive efficiency
Whenanormalconventionalpropellermaynot
performsatisfactorilyincertainoperatingconditions

Propulsion Performance
Improvements inpropulsionperformance/ efficiency:
▪Reductioninkineticenergylossesintheslipstream
▪Reductioninfrictionlossesatthepropeller
▪Improved(moreuniform)inflowintothepropeller
▪Higherthrustgeneration,inadditiontothepropellerthrust

Design Consideration
SelectionofUnconventional Propulsors
▪Propulsiveefficiency
▪Cavitation,vibration,andnoise
▪Initialcost,weight,volumeetc.
▪Associatedmachinery
▪Reliabilityandmaintenanceaspects

Waterjet Propulsion
Awaterjetpropulsionunitconsistsofapumpinsidetheshipwhichdrawswaterfromoutside,
impartsanaccelerationtoitanddischargesitinajetabovethewaterlineatthestern.
▪Thejetreactionprovidesthethrusttopropeltheshipforward.
▪Thejetcanbedirectedsidewaysformanoeuvringtheship,andcan
bedeflectedforwardtoobtainasternthrust.

Waterjet Propulsion
Reversing Bucket
Stator
Swivelling Nozzle
Impeller
Water Inlet

Waterjet Propulsion
SwivellingNozzle:
Thewaterjetisdischargedthroughanozzlewhichcanberotatedaboutavertical
axistoapproximately45degreesoneithersidetoturnthevessel.

Waterjet Propulsion
ReversingBucket:
Abucketwhichcanberotatedaboutahorizontalaxisandusedtodeflectthewaterjet
downwardandforward,therebyproducinganasternthrust.
Byadjustingitsposition,thethrustofthewaterjetcanbevariedfromfullaheadthrough
zerotofullasternwithoutalteringthedischargeofthepump.
**Excellentmanoeuvring,stoppingandreversingcapabilitiesofthevessel.

Efficiency
❑Momentum theorycanbeusedforsimpleestimationoftheefficiencyof
awaterjetsystem.
❑EfficiencyComponents:
η
H
:HullEfficiency
η
J
:JetEfficiency
η
P
:PumpEfficiency

Efficiency
❑Lossesconsideredinthecalculationofjetefficiency:
•Inletlosses
•Energyforraisingthewaterthroughacertainheight
•Lossesinthenozzle

Advantages
❑Noappendages:reductioninresistance.
❑Canbeusedinshallowwaterwithoutanylimitationonthesizeofthepump.
❑Improvedmanoeuvrability,stoppingandbackingability.

Advantages
❑Propulsionplantdoesnotrequirereversinggear.Fullaheadtofull
asternspeedcanbecontrolledwithoutalteringtheenginerpm.
❑Torqueisconstantoverthecompletespeedrange.
❑Lessnoiseandvibration

Disadvantages
❑Thepropulsionunitoccupiesconsiderablespaceinsidetheship,and
thewaterpassingthroughcausesasignificantdecreaseinbuoyancy.
❑Atthewaterinletgratingisprovidedtopreventdebrisfromgettingin
anddamagingthepump.Thisdecreasestheefficiencyofthesystem.

Some Design Aspects
❑DesignofInlet:Effectofboundarylayersuctionaroundthehulljust
aheadoftheinlet.
❑Pump:Differenttypes-axialflow,radialflowormixedflowmaybeused.
❑Powering:Thepreliminarydesignisusuallycarriedoutusingdesign
chartsprovidedbywaterjetsystemmanufacturers.Thepoweringis
estimatedbasedonvesselspeedandthrustrequirementsbyapplying
suitablemargin.
Applications: Ferries, Naval vessels etc.
(typical vessel speed > 30 knots)

Waterjet Design
Chart example

Avesseltobepropelledbytwinwaterjetshasaneffectivepowerof2400kWatitsdesign
speedof30knots.
Carryoutapreliminarydesignofthewaterjetsassumingthefollowingvalues:
wakefraction0.05,thrustdeductionfraction0.03,pumpefficiencyinuniforminflow0.89,
relativerotativeefficiency0.96,inletefficiency0.82,nozzleefficiency0.99,shafting
efficiency0.95,andheightofnozzlesabovewaterlevel0.75mat30knots.
Assume:
Overallpropulsiveefficiencyof0.53.
Nozzle(Jet)Area/DiscArea=0.4

Multiple Propeller Arrangement
Tandem Propellers
Intandempropellerarrangementmultiple(usually
two)propellersaremountedonthesameshaft
androtatedinthesamedirection.

Multiple Propeller Arrangement
Tandem Propellers
Tandempropellersareapplicableinsituationsofhighthrust
requirementandrestrictedpropellerdiameter.
Usuallytheforwardandaftpropellerintandemconfiguration
hasthesamenumberofbladesandsamepropellerdiameter.
AftPropeller ForwardPropeller

Multiple Propeller Arrangement
Tandem Propellers [Advantages]
Atandempropellermaybemoreefficientthanaconventionalpropeller
athighloadingwhereitcanproducehighthrust.
Asthethrustisdistributedbetweenthetwopropellers,thepropeller
diametercanbereduced.

Multiple Propeller Arrangement
Tandem Propellers [Disadvantages]
Atnormaltolowpropellerloadingsnosignificantadvantageisobtained
byadoptingatandempropeller,andtheefficiencyisoftenlowerthan
singlescrewpropeller.
Atandempropellerhasahigherweight,costandrotationalenergy
losses.

Multiple Propeller Arrangement
Overlapping propellers
Twopropellersarelocatedatthesamelongitudinal
positionbutthetheirrespectiveshaftsare
separatedbyadistancelessthanthepropeller
diameter.Theyarenotcommonlyused.

Multiple Propeller Arrangement
Overlapping propellers [Advantages]
1.Asthethrustisdistributedbetweenthetwopropellersthe
efficiencymaybehigher.
2.Comparedtoanormaltwinscrewpropeller,thesepropellers
workinaregionofhighwake,andthehullefficiencyincreases.

Multiple Propeller Arrangement
Overlapping propellers [Disadvantages]
1. The mutual interaction leads to vibration and cavitation
2. Unsteady forces are more.
3. Difficult to support two shafts close to each other

Contra-rotating Propeller
Inacontrarotatingpropellertwopropellers
aremountedoncoaxialshafts,rotatingin
oppositedirection.
CancellationofRotationalvelocitiesinthe
slipstreambythetwopropellers.
AftPropeller ForwardPropeller

Contra-rotating Propeller
Theaftpropellerisusuallymadesmallerthanthe
forwardpropellertoavoidinteractionwiththetip
vorticesgeneratedfromtheforwardpropeller.
Thenumberofbladesoftheforwardandaft
propellerneednotbesame.
AftPropeller ForwardPropeller

Contra-rotating Propeller
Application
1.Used in torpedoes: The torque reactions of the two propellers
cancel each other to provide directional stability.
2.Different vessels where the efficiency improvement is important
based on the economy considerations.

Contra-rotating Propeller
Advantages
1.More efficient when compared to a single screw propeller [up to 15%
increase in efficiency can be obtained]
2.As the thrust is distributed between the two propellers, the propeller
diameter and blade area ratio can be reduced.
3.Reduction in pressure fluctuation and noise

Contra-rotating Propeller
Disadvantages
1.Mechanical complications involved
2.Higher maintenance
3.Greater weight
4.The sealing of shaft against ingress of water is critical

Supercavitating Propellers
Supercavitatingpropellersareconsideredcertaindesignconditionswhereunacceptable
levelsofcavitationcannotbeavoided.
Thebackofthepropellerbladesectionisfullycoveredwithavapourfilledcavityfor
supercavitatingpropellers.
Asupercavitatingpropellercanprovidethrustatnearlythesame
efficiencyasaconventionalpropeller,whenasuitableoperating
conditionisadopted(combinationofJandσ).

Supercavitating Propellers
A supercavitatingpropeller compared to a conventional propeller can have:
1.Betternoiseand vibrationalcharacteristics
2.Reduced/ No cavitation erosion
Applications:
1.Racingmotorboats.
2.Vesselshavinghighenginepower,rpm,ship
speedalongwithlowpropellerimmersionand
smallpropellerdiameter.

Supercavitating Propellers
Thebladesectionshapeofasupercavitatingpropellershouldensurecompleteseparationof
flowontheback,andalsoprovidehighlift/dragratio.
Hence,bladesectionswithsharpleadingedgesareused.
TulinSection Modified TulinSection Cupped Trailing Edge Section

Supercavitating Propellers
Challenges
Propeller blade strength problems, due to thin leading edge of the blade section.
Performance in low speed range and off design conditions

Tip Modified Propellers
Examples:
TipVortexFree(TVP)propellers
ContractedandLoadedTip(CLT)propellers
AbasicversionofaTipModifiedPropellerhasanendplateattachedtothe
propellerbladetip.Thisenablestosuppressthetipgeneratedtrailingvortices,
whichallowsabettercirculationdistributionradiallysothatthepropellerloadingat
badetipcanbeincreased.

Tip Modified Propellers
The other propeller types include-Kappel propeller and Lips tip rake propeller
Kappelpropellers Lipstiprakepropeller

Tip Modified Propellers
Advantages
1.Tipvortexcavitationisreduced
2.Improvesthepropellerefficiency
3.Aproperendplatedesignmayproduceadditionalthrust
Disadvantages
Verylargeendplatesincreasethedragandreducestheefficiency

Cycloidal Propellers
Thebladesarefittedtoadisc(ontheshiphull)which
revolvesaboutaverticalaxis,andthebladescanrotate
abouttheirownindividualaxis.
Thepropellersgenerallyhavetheiraxisorientedvertically,and
arehencecalledVertical-axisPropellers.

Cycloidal Propellers
Types:
Forshipspeed‘V’andpropellerangularvelocity‘ω’thepathdescribedbyeachbladeis:
Epicycloid(V<ωR)
Cycloid(V=ωR)
Trochoid(V>ωR)

Cycloidal Propellers
Applications
Examplesofvertical-axispropellers:
Kirsten-Boeingpropeller
Voith-Schneiderpropeller
Efficiencyisusuallylowerascomparedtoconventionalpropellers.
Usedinvesselswhereveryhighdegreeofmanoeuvrabilityisrequired.
(Towingvessels,Shortferriesetc.)

Surface Piercing Propellers
Apropellerarrangementinwhichthepropelleris
partlysubmergedandpiercesthewatersurface.
Typicallyusedinhigh-speedplaningcraftswhere
propellersubmergencedecreasesathighspeeds.
Operatesinpartiallyventilated,transition,and
fullyventilatedconditions.

Surface Piercing Propellers
As the propeller blade leaves and enters the water in each revolution, surface tension is
an important factor to be considered.
Thus,
W
nis the weber number
&#3627408458;
??????=
&#3627408457;
2
??????
κ
κ: Kinematic Capillarity
&#3627408498;
??????
=??????&#3627408497;,&#3627408505;
&#3627408527;,&#3627408493;&#3627408527;,&#3627408492;
&#3627408527;,??????
&#3627408527;
&#3627408498;
&#3627408504;

Surface Piercing Propellers
Propellershaftisgenerallyprovidedwithsomeinclination.
Unbalancedforcesinthetransverseplaneduetoboth
shaftinclinationandpartialsubmergence.
Inthefully-ventilateddesigncondition,thesuction
surface(back)ofthepropellerbladesshouldbe
surroundedbyairfilmextendingtothefreesurface.

Surface Piercing Propellers
Thedesignofsurfacepiercingpropellersis
mainlybasedonmodelexperiments.
Thebladesectionsinasurfacepiercing
propellerincludes:
▪Wedge shaped section
▪Wedge shaped section with cupped
trailing edge
▪Diamond back shape
Wedge shaped
section
Wedge shaped section
with cupped trailing edge
Diamond back shape

Surface Piercing Propellers
Assurfacepiercingpropellerislocatedbehindthehulltheunder-waterappendages
requiredtosupportthepropellercanbeeliminated.
Reductioninappendageresistancehelpsinreducingtotalpowerrequirement.
Notsusceptibletocavitationasthepropellerbackiscoveredwithairfilm.
Alargerdiameterispossibleeveninshallowwatersasthepropellerisnotfully
submergedandhencecanhaveapplicationsininlandvesselsandhigh-speedcrafts
operatinginshallowwaters.
Advantages and Applications

Surface Piercing Propellers
Unsteadyforcesandstrengthrelatedissues,asthepropellerblade
leavesandentersthewaterineachrevolution.
Fatigueandvibrationduetoperiodicloading.
Thepropellershaftandbearingsaresubjectedtoacomponentof
hydrodynamicforcesduetopartialsubmergenceofthepropeller.
Disadvantages

Surface Piercing Propellers
Unsteadytorqueaffectstheengineandpropellershafts.
Poorasterncapability.
Theimmersionofthesurfacepiercingpropellermayvarywithspeedas
thevesselmaytrim.Thiscausesvariationsinthepropellerloading.
Atlowspeedshigh(propellerimmersion)theenginemaygetoverloaded.
Disadvantages

Podded and Azimuthing
Propellers
1.Podded propellers
2.Azimuthingthrusters

Whenthepropellerdrivingunitishousedinapodexternaltothe
shiphull,itistermedas‘PoddedPropeller’.
Thepropellerpoweringunitmayalsobehousedinsidetheship
hullanddrivenbyaverticalshaft(throughtheazimuthaxis)for
Azimuthingthrusters.
Due to larger wetted surface area the podded propeller will have more drag.
Podded and Azimuthing
Propellers

Based on location of the propeller it can be classified into:
1.Pulling Type: Propeller ahead of the Pod
2.Pushing Type: Propeller behind the Pod
PullingType Pushingtype
Podded and Azimuthing
Propellers

Multiple propeller arrangements on pod rotating in different directions.
Contra–rotatingpropelleratbothends
Podded and Azimuthing
Propellers
Contra–rotatingpropelleratoneend

When the pod and the supporting structure can rotate about the vertical axis then the
arrangement is called ‘azipod’
AzipodArrangement
Podded and Azimuthing
Propellers

Applications:
1.Tugs, offshore vessels, semi-submersible rigs (Azimuthingthrusters are usually used)
2.Icebreakers, ro-ro ferries, cruise ships, passenger liners (Pods are usually used)
Podded and Azimuthing
Propellers

Transverse Thrusters
Transversethrustersaredevicesused to
improvethemanoeuvringcapabilityofavessel
inconfinedwaters.
Thrustersareusuallyfittedatthebowandare
knownas‘BowThrusters’.
Howeverotherlocationsarealsopossiblelikeat
thestern,skeg,etc.
Source:.Wikimediacommons

Transverse Thrusters
Forvesselsrequiringahigherdegreeof
manoeuvrabilitymorethanonethrustersareused.
TheTransversethrusterunitconsistsofa
propellerenclosedinatunnel.
Source:.Wikimediacommons

Transverse Thrusters
Thepropellerisdrivenbyanelectricmotororsomehydraulicmechanism.
Thepropellercanbeafixedpitchpropellerorcontrollablepitchpropeller
Thethrustersgenerallyprovideequalthrustonboth
directions(portandstarboard)andthereforethebladesare
usuallymadesymmetricwithoutcamber.

Transverse Thrusters
Insymmetricbladesections,theliftiscausedpurelydue
toangleofattackandthechancesofcavitationarehigh.
Toreducethecavitationinducedvibrationsthewhole
thrusterunitcanbeflexiblymountedtotheshiphull.
Whentheforwardspeedincreases,thethruster
performancedecreasesasthewatergetsdeflectedaft
andreducedinflow.
Theperformanceinforwardmotioncanbeimprovedby
usingAntisuctiontunnels.
ASTVent
ASTVent
Thrust

Optimumopenwaterefficiencyvaluesfordifferent
propellertypes.
(vanManen,J.D.."TheChoiceofthePropeller."MarTechnol
SNAMEN3(1966):158–171)
B
P= [ K
Q/ J
5
]
1/2

Oscillating Propulsors
How does a fish
propel itself?
Oscillating/Undulatingbody/finmotions
Vorticesgenerated:PropulsiveForces
Control:Muscularmovementandfinstructure

❖Forfishandotheraquaticanimals,therearegenerallytwotypesofswimmingmethods:one
usingBodyand/orCaudalFin(BCF)andtheotherusingtheMedianand/orPairedFin(MPF)
whichmaybecombinedbehaviouroftwopectoralfinsorboththeiranalanddorsalfins.
❖Thereisalsojetpropulsion(e.g.,jellyfishandscallop)aswellaswalkersandcrawlers(e.g.,
shrimpandcrab),thoughthesearenotmainstream.
❖Moreover,BCF(i.e.,tailflapping)isusedbyapproximately85%ofthefishspecies,including
manyfastswimmerssuchassailfish,tuna,andpike.
❖Therefore,itismoststudiedformofswimming.WithinBCF,thereareroughlytwokindsofmotion
modes:theoscillatorymotion,orthe“C”mode,(e.g.,carp)andtheundulatorymotion,orthe“S”
mode(e.g.,eel).
Fish Locomotion
‘Robot Fish’ (Springer)

Fish Locomotion

Oscillating Propulsors
Afoiloscillatingsinusoidallywithfrequency(f),andamplitude(θ)
θ(t) = θ
maxsin(2πft)
Vortices in the wake of an oscillating foil
(NACA 0012 design) in pure pitching motion

Fish Locomotion

Oscillating Propulsors
ത??????:Timeaveragedthrustoveracompletecycle
ഥ&#3627408458;:Workdonetomaintainthemotionoveracompletecycle
η=
&#3627408456;ത&#3627408455;
ഥ??????
Performancedependson:geometry,motioncharacteristics,flexibility
Application:Bio-inspiredautonomousunderwatervehicle(AUV)etc.

Energy Saving Devices

Propulsion performance improvement after optimizing propeller design
Need for Energy Saving Devices
▪Moreuniforminflowintothepropeller
▪Improvementofpropellerefficiency
▪Reducedcavitation,vibration,andnoise
▪Recoverenergylossesinthepropellerslipstream

IMO Regulations
Energy Efficiency Design Index (EEDI)
An index for new ships that estimates grams of CO
2per transport work (g of CO
2per tonne‐mile).
&#3627408492;&#3627408492;&#3627408491;&#3627408496;=
&#3627408490;????????????&#3627408492;&#3627408526;??????&#3627408532;&#3627408532;??????&#3627408528;&#3627408527;
??????&#3627408531;??????&#3627408527;&#3627408532;&#3627408529;&#3627408528;&#3627408531;&#3627408533;??????&#3627408528;&#3627408531;??????
Energy Efficiency Existing ship Index (EEXI)
Globalmeasurestoreducegreenhousegas(GHG)emissionsfromshipping
Environmentallyfriendlytechnologiestoreducetheshippingindustry’scarbonfootprint

❑Pre-Swirl
❑AtPropeller
❑Post-Swirl
Three Zones for ESD
Pre-SwirlAtPropellerPost-Swirl

Pre-SwirlAtPropellerPost-Swirl
▪Fins
▪Spoilers
▪Asymmetricstern
▪Stators
▪Ducts
▪Propeller
with End
Plates
▪Multiple
Propellers
▪Twisted Rudder
▪Rudder with bulb
▪Vane Wheel
Propeller
Wake and Boundary
layer Effects
Hub Vortex losses
Tip Vortex losses
Rotational losses
Losses due to
blade friction,
circulation
distribution etc.
Losses around a Marine Propeller & applicability of
Energy Saving Devices
Tip Vortex losses
Momentum losses

ESD in the Marine Industry
MewisDuct
Source: Becker Marine Systems
SchneekluthDuct
Source: SchneekluthHydrodynamikk
Pre-swirl Stator
Source: Daewoo Shipbuilding
Pre-Swirl
Post-Swirl

Hydrodynamics
Pre-Swirl Devices
Examples
Theflowattheaftpartoftheshipwherethepropelleroperatesisquitecomplexduetothe
sterngeometryandhull-propellerinteraction.
Apre-swirldeviceworksinsuchawaythatitmodifiestheboundarylayerintheaftregionand
alsoprovidesabetterinflowtothepropeller.
Fins,Spoilers,Asymmetricstern,Ducts,Stators,etc.

Fins and Spoilers
Pre-Swirl Devices
Finsfittedaheadofthepropellercaneliminatedcrossflows,angularvelocityvariationsand
therebyimprovetheflowintothepropeller.
Canproduceasmallcomponentofforwardthrust
Mayincreasethemassflowintothepropellerdisc.
Mayreduceseparationandresistance,improvethepropellerefficiency,andreducevibrations.
Thegeometricshape,location,andotherparametersneedtobedetermined.

Asymmetric Stern
Pre-Swirl Devices
Thetransversesectionsintheaftportionoftheshiparenotsymmetricabout
thecenterline.
Thepurposeofthisdesignistoimpartaswirltotheflowimmediatelyaheadof
thepropellerinordertocountertherotationalflowinducedbythepropeller.
S: Symmetric stern
A: Asymmetric stern

Asymmetric Stern
Pre-Swirl Devices
Asymmetricsternscanhelpinmakingtheeffectivewake
moreuniformbyintroducingapre-swirl.
S: Symmetric stern A: Asymmetric stern
Themaindisadvantageisthedifficultyinconstructionand
highproductioncost.

Pre-swirl Duct
Pre-Swirl Devices
Theseductsarefittedaheadofthepropellertoacceleratetheflow,especially
intheupperhalfofthepropellerdisc,wherethevelocityisgenerallylowdueto
hulleffect.Thisreduceswakenon-uniformity.
Ductscanalsogenerateforwardthrust.
Differentvariationsinductshapearepossible:Acompletering-shaped,halfon
eachsideofthehull,ductplacedasymmetricallyetc.
Pre-Swirl Duct
Source: Wikimedia commons

Pre-swirl Duct
Pre-Swirl Devices
•Increasesthepropellerefficiency,
•Reduceflowseparationatstern(hence,lessshipresistance)
•Reducecavitationandunsteadypropellerforces.
•Betterflowintotherudderandhenceimprovedmanoeuvrability

Stators
Pre-Swirl Devices
Statorcanbeusedtocountertherotationalflowinducedbythepropellerby
increasetherelativetangentialvelocityofthepropellerblades.
Statorsgenerallyhavealargerdiametercomparedtothepropellerinorderto
avoidtheinfluenceoftipvortices.
Stator
Thenumberbladesofstatorandpropellerareselectedsuchthatresonantvibrations
areavoided.
Statorbladesarearrangednon-uniformlyandhaveunequalnumberofbladesinport
andstarboardtoreducevibrations.

Hydrodynamics
Energy Saving at Propeller
Examples
Modificationsareincorporatedbyvaryingthepropellerdesignorothertechniquessuchthat:
▪Bladefrictionlossescanbereduced
▪Betterpropellerloadingandradialcirculationdistribution
▪Reducetipvorticesandrotationallosses
▪Bettervibrationandcavitationcharacteristicsareobtained
Propellerfittedwithendplates,Multiplepropellersetc.

Hydrodynamics
Post-Swirl Devices
Examples
Thepost-swirldevicesarelocatedaftofthepropeller.Hence,thesearenotabletoimprovethe
flowintothepropeller,butcanrecoversomeenergylostinthepropellerslipstream
Propellerbosscapfins(PBCF),TwistedRudder,RudderwithBulb,VaneWheelPropeller.

Propeller Boss Cap Fins
Post-Swirl Devices
PBCFarrangementconsistofsmallbladesorfinsattachedtothe
propellerbosscap.
Thesefinsweakenthevortexfrombladerootsandhubthuseliminating
thehubvortexcavitationandthereducesnoiseandruddererosion.
Thenumber,geometry,andorientationofthefinsinPBCFareimportantdesignfactors.
Propeller Boss Cap Fins
Source: Wikimedia commons

Rudder with Bulb
Post-Swirl Devices
Inthisarrangementalargebulbisattachedtotherudderbehindthe
propellerhub.
Thisdesignisusedtoeliminateflowseparationandexcessive
vorticityfromthepropellerboss.
Inotherversionsofrudderwithabulb,asetoffinsarepresentaroundthebulb,
whichgeneratesliftandcontributetothrust.
Rudder with Bulb
Source: Wikimedia commons

Twisted Rudder with Bulb
Post-Swirl Devices
Inthisarrangementtheleadingedgeoftherudderis
curvedandalignedwiththeswirlingflowcomingfrom
thepropeller.
Twisted Rudder with Bulb
Source: Wikimedia commons

Grim Vane Wheel Propeller
Post-Swirl Devices
Thisconsistofasetofnarrowvanesorbladesattached
toahubbehindapropellerwhichcanrotatefreely
(inventedbyOttoGrim).
Grim Vane Wheel Propeller
Source: Wikimedia commons
Itrecoversenergyfrompropellerslipstream(innerradii)andimpartsthisenergyto
theflowatouterradiiprovidingaxialthrust.Significantimprovementinpropulsive
efficiencycanbeachieved.

Grim Vane Wheel Propeller
Post-Swirl Devices
Thedesignofpitchdistributiondesignissuchthattheinner
partactasturbine(whichabsorbsenergyfromtheflow)while
theouterportionissimilartoapropeller(theenergyis
impartedtotheflow).
Thenumberofbladesinavanewheelismorethanthenumberofpropellerblades.
Grim Vane Wheel Propeller
Source: Wikimedia commons

Grim Vane Wheel Propeller
Post-Swirl Devices
Thevanewheelproducesthrustwithoutabsorbingadditional
power.Thepropellerloadingandthepropellerdiametercan
bereduced.
Reducedpressurefluctuationsandcavitation.
Thevanewheeldiameterisusually25%greaterthan
propellerdiameter,andrevolvesataround30-50%ofthe
propellerrpm.
Strengthofvanesmaybeafactorofconcern.
Grim Vane Wheel Propeller
Source: Wikimedia commons

Hydrodynamics
ESD Combinations
Example
Thecombinationofasetofdevicesmaybe
effectivelyemployedbasedonthehydrodynamic
advantagefromeachofthem.
Pre-swirlDuctand/orStatorwithRudderBulb
Ship stern fitted with Pre-swirl duct and Rudder bulb
Source: Wikimedia commons

ESDs in the Marine Industry
Pre-Swirl Post-Swirl
MewisDuct Grim Vane Wheel
SchneekluthDuct WärtsiläEnergoPac
[Integrated Rudder Propeller Hub]
GrothuesSpoilers The Potsdam Model Basin (SVA)
Hub Vane Propeller
Mitsubishi Reaction Fin System Rolls-Royce PROMAS
[Integrated Rudder Propeller Hub]
Daewoo Shipbuilding and Marine
Engineering Pre-Swirl Stator
Kawasaki Heavy Industries Rudder Bulb
System
The Potsdam Model Basin (SVA)
Pre-Swirl Fin system
Becker Marine Systems Twisted Rudder

Retrofitting on existing vessels
ESD Applications
Fitting on Newly designed/ built vessels
SHIP SPECIFIC DESIGN

CFD Methods
ESD Performance Investigations
Model Tests
Self-propulsiontestswiththemodelfittedwithESDtoassesspoweringimprovement
ScaleeffectsfortheESDsbecomeverycritical
CFDsimulationsperformedinthefullscale,andparametricstudycanbedone
Flowvisualizationtounderstandthehydrodynamicperformanceimprovement

REFERENCES
(1)‘MarinePropellersandPropulsion’byJohnCarlton,Butterworth-HeinemannPublisher.
(2)‘BasicShipPropulsion’byJ.P.GhoseandR.P.Gokarn,KWPublishersPvt.Limited.
(3)‘ShipResistanceandPropulsion’byA.F.Molland,S.R.Turnock,andD.A.Hudson,Cambridge
UniversityPress
(4)‘MarinePoweringPredictionandPropulsors’byNeilBose,TheSocietyofNavalArchitectsand
MarineEngineers