CT_Sec_1.pptxfyocyococoycxoycyocycoyxykx6x

uossryelshall 13 views 18 slides Sep 21, 2024
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

Yitix


Slide Content

Section 1 Deterministic Finite Automata (DFA) 1

Th e o r y o f C o m pu t a t i o n We use these methods to recognize regular languages 2 Languages Regular Languages Deterministic Finite Automata (DFA)

Automata The term "Automata" is derived from the Greek word "α ὐτόμ ατα" which means "self-acting“ An automaton is an abstract self-propelled computing device which follows a predetermined sequence of operations automatically. An automaton with a finite number of states is called a  Finite Automaton  (FA) or  Finite State Machine  (FSM).

Formal definition of a Finite Automaton An automaton can be represented by a 5-tuple (Q, ∑, δ, q , F), where

Related Terminologies Alphabet String

Length of a String Kleene Star

Kleene Closure / Plus Language

Wh a t i s a L a ngu a g e ? A language is a set of strings over For example, alphabet {0, 1} a n alphabet. Language Language Language Language L1 L2 L3 L4 = = = = {1, 0, 11, 00} {01, 111, 000} {ε} the empty string "epsilon” ∅ , t h e e m p t y l a n g u a g e , with no strings 3

Wh a t i s a R e gu l a r Language? Regular language is one that can be recognized by a Deterministic Finite Automata (DFA), or Non-Deterministic Finite Automat (NFA), or Regular Expressions (Regex). For example: L1={strings end with 1}, e.g. {01, 11, 10101, 100001, L2= {strings start and end with 0}, e.g. {0, 00, 010, 011110, L3= {strings have even number of 1’s}, e.g. {11, 101, 1010, 1111,... } …} …} 4

Deterministic Finite Automata (DFA) What is the formal description of M1? Example 1: M1 This DFA is a 5-tuple: (Q, Σ , δ , q , F) Q = set of states = {q0, q1} Σ “sigma” = alphabet set = {0, 1 } δ = t r a ns i t i o n f un c t i o n = state q = first state = q0 F = set of final states = {q1}. 5 diagram / table

Deterministic F in i t e A u t o m a t a ( D F A ) Example 1: M1 d = transition function State Diagram (figure) Transition Table 6 1 q0 q0 q1 * q1 q0 q1

Deterministic Finite Automata (DFA) Transition Table What is the language recognized/accepted by M1? e.g {01, 011, 0101, 01011, 1, 11, 101, 1001…} L1 = {over (0, 1)|strings that end with 1} 7 1 q0 q0 q1 * q1 q0 q1

M o r e examples of DFA Example2: M2 W h a t M2? is the language recognized by 1 1 q q 1 State Diagram for M 2 3

Machine Input string: ε 2 Example2: M2 What is M2? the language recognized by 1 1 e.g. {ε, q q 1 State Diagram for M 2 4

C h e c k i n g s o m e a cc e p t e d s t r i n g s Example2: M2 What is the M2? language recognized by 1 1 e.g. {ε, 0, q q 1 State Diagram for M 2 5 Input string:

C h e c k i n g s o m e a cc e p t e d s t r i n g s What is the language M2? recognized by 1 1 e.g. {ε, 0, 00, q q 1 State Diagram for M 2 6 Input string: 00

C h e c k i n g s o m e a cc e p t e d s t r i n g s Input string: 1 What is the language M2? recognized by 1 1 e.g. {ε, 0, 00, q q 1 State Diagram for M 2 7

Machine Input string: 10 2 Example2: M 2 What is the language M 2 ? e.g {ε, 0, 00, 10, …} recognized by 1 1 q q 1 L(M 2 ) = { over (0, 1) | strings that end with or ε, empty string} State Diagram for M 2 8