CVS PSL and Monitoring

aljonaieh 1,347 views 77 slides Feb 13, 2010
Slide 1
Slide 1 of 77
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77

About This Presentation

By Dr.Tariq


Slide Content

Cardiovascular Physiology and Monitoring Tariq AlZahrani M.D Assistant professor College of medicine King Saud University

Coronary Circulation Blood Supply RCA LCA Conduction System SAN AVN Coronary Perfusion Pressure (50-120mmHg) ADBP – LVEDP

Cardiac Cell Types • Electrical cells Generate and conduct impulses rapidly • SA and AV nodes • Nodal pathways • No contractile properties • Muscle (myocardial) cells Main function is contraction • Atrial muscle • Ventricular muscle • Able to conduct electrical impulses • May generate its own impulses with certain types of stimuli

PURKINJE FIBERS BUNDLE BRANCHES Sino-atrial (SA) node Atrio-ventricular (AV) node

INTERCALATED DISC (TIGHT JUNCTION)

Nerve impulse Terminology • Resting state The relative electrical charges found on each side of the membrane at rest • Net positive charge on the outside • Net negative charge on the inside • Action Potential Change in the electrical charge caused by stimulation of a neuron

Action Potential Terms • Depolarization The sudden reversal of electrical charges across the neuron membrane, causing the transmission of an impulse • Minimum voltage must be met in order to do this • Repolarization Return of electrical charges to their original resting state

Automaticity (P Cells) Prepotential , Resting Potential, Diastolic Depolarization Action Potential Repolarization Factors That Affect Automaticity: Sympathetic and parasympathetic outflow will affect the prepotential phase Temperature RA and SAN stretch Hormones Drugs Distribution Of P Cells

Conduction Speed A-V nodal conduction: One way conduction A-V nodal Delay (0.1 sec ) Factors Affecting Conductivity: Sympathetic and vagal infuince Temperature Hormons Ischemia Acidosis Drugs

MEMBRANE POTENTIAL (mV) -90 1 2 3 4 TIME PHASE 0 = Rapid Depolarization (inward Na + current) 1 = Overshoot (outward K + current) 2 = Plateau (inward Ca ++ current) 3 = Repolarization (outward K + current) 4 = Resting Potential Mechanical Response (outward K + current) (inward Na + current)

MEMBRANE POTENTIAL (mV) -50 -50 -100 -100 SAN VENTRICULULAR CELL ACTION POTENTIALS 1 2 3 4 4 3

Cardiac Myocyte Structure Ca ++ Release Excitation-Contraction Coupling

The Fibrous A-V Ring

THE ANATOMY OF BLOOD VESSELS Layers: Tunica interna ( intima ) Tunica media Tunica externa (adventitia)

Comparison of Veins and Arteries Arteries: Veins:

The Distribution of Blood

Cardiac Output CO = SV x HR • The amount of blood ejected from the ventricle in one minute • Stroke volume Amount of blood ejected from the ventricle in one contraction • Heart rate The # of cardiac cycles in one minute

Determination of Stroke Volume • Preload Amount of blood delivered to the chamber Depend upon venous return to the heart Also dependent upon the amount of blood delivered to the ventricle by the atrium • Contractility The efficiency and strength of contraction Frank Starling’s Law • Afterload Resistance to forward blood flow by the vessel walls

• End-diastolic volume (110-120 mL ) • End-systolic volume (40-50 mL ) • Stroke volume (70 mL ) • Ejection fraction (60%)

Pressure-Volume Loops

Volume Load ► Pressure Load ►

Regulation of Cardiovascular System Neural Mechanisms Vasoconstriction Vaosdilation Baroreceptors Chemoreceptors

Nerve Supply of the Conduction System

HORMONAL REGULATION Epinephrine & Norepinephrine From the adrenal medulla Renin-angiotensin-aldosterone Renin from the kidney Angiotensin , a plasma protein Aldosterone from the adrenal cortex Vasopressin ( Antidiuretic Hormone-ADH ) _ ADH from the posterior pituitary ANP from RA

 BP (Kidney) Renin Angiotensinogen (renin substrate) Angiotensin Aldosterone Kidney  sodium & water retention Vasoconstriction Venoconstriction RENIN-ANGIOTENSIN-ALDOSTERONE MECHANISM

Hypothalamic Osmoreceptors  BP via Posterior Pituitary  Vasopressin (ADH) Vasoconstriction  Water Venoconstriction Retention VASOPRESSIN (ANTIDIURETIC HORMONE)

How To interpret ECG? 1. Rate? 2. QRS Duration? 3. Stability?

ECG limb leads

Normal ECG

P wave corresponds to depolarization of SA node QRS complex corresponds to ventricular Depolarization T wave corresponds to ventricular repolarization Atrial repolarization record is masked by the larger QRS complex

Measurements Small square = 0.04 sec. Large square = 5 small square = 0.2 sec. One second = 5 large square. One minute = 300 large square.

P duration = 3 small sqs = 0.12 sec. P height = 3 small sqs = 0.12 sec. QRS duration= 3 small sq =0.12 sec. P-R interval = 5 small sq = 0.2 sec . Remember This 3, 3, 3 and 5

Right ventricular hypertrophy ( precordial leads)

Left ventricular hypertrophy ( precordial leads)

QRS voltage decrease • Myocardial infarction (decrease of excitable myocardium mass) • Fluids in the pericardium (short-circuits of currents within pericardium) • Pulmonary emphysema (excessive quantities of air in the lungs)

J-point: ST-segment shift – sign of current of injury -Time point of completed depolarization (zero reference) -The junction of the QRS and the ST segment

Injury currents: constant source • Mechanical trauma • Infectious process • Ischemia

Ischemia = ST depression or T-wave inversion Represents lack of oxygen to myocardial tissue

Injury = ST elevation - - represents prolonged ischemia; significant when > 1 mm above the baseline of the segment in two or more leads

Infarct = Q wave — represented by first negative deflection after P wave; must be pathological to indicate MI

What part of the heart is affected ? II, III, aVF = Inferior Wall I II III aVR aVL aVF V1 V2 V3 V4 V5 V6

Which part of the heart is affected ? I II III aVR aVL aVF V1 V2 V3 V4 V5 V6 Leads V1, V2, V3, and V4 = Anterior Wall MI

What part of the heart is affected ? I, aVL, V5 and V6 Lateral wall of left ventricle I II III aVR aVL aVF V1 V2 V3 V4 V5 V6

I, aVL , V5 + V6 = Lateral Wall = Circumflex Artery Blockage

Rate If regular: Divide 300/ number of large squares between 2 Rs = HR If irregular: count number of complexes in 6 sec. and multiply by 10 - Normal 60 -100 - Bradycardia < 60 - Tachycardia > 100 P = Sinus No P = Non sinus

Rate > 100. QRS: Narrow. Stable or unstable. Rate < 60. QRS: Narrow. Stable or unstable. Sinus tachycardia . PSVT. Atrial flutter. Atrial fibrillations. Sinus bradycardia. 1 st degree HB. 2 nd degree HB. Complete HB. Supraventricular Rhythm

Supraventricular Rhythm: Tachycardia Sinus Tachycardia

Paroxysmal SVT Supraventricular Rhythm: Tachycardia

Atrial Flutter Supraventricular Rhythm: Tachycardia

Atrial Fibrillations Supraventricular Rhythm: Tachycardia

Supraventricular Rhythm: Bradycardia Sinus Bradycardia Normal Sinus Rhythm

Supraventricular Rhythm: Bradycardia 1 st Degree HB

Supraventricular Rhythm: Bradycardia 2 nd Degree HB: Mobitz 1 Wenckebach. Progressive lengthening of the P-R interval with intermittent dropped beat.

Supraventricular Rhythm: Bradycardia Sudden drop of QRS without prior P-R changes 2 nd Degree HB: Mobitz 2

Supraventricular Rhythm: Bradycardia 3 rd Degree HB

The right bundle brunch block ( precordial leads)

Left bundle branch block ( precordial leads)

Characteristics of PVCs • QRS prolongation due to slower conduction in the muscle fibers • QRS high amplitude due to lack of synchrony of excitation of RV and LV which causes partial neutralization of their contribution to the ECG • QRS and T-wave have opposite polarities, again due to slow conduction which causes repolarization to follow depolarization.

Ventricular Rhythm Idioventricular Rhythm.

Ventricular Rhythm Accelerated Idioventricular Rhythm.

Ventricular Rhythm

Ventricular Rhythm

Pacer Rhythm Ventricular Rhythm

Stability * Stable patient: think of drug therapy. * Unstable patient: think of electric therapy.

Treatment Supraventricular Rhythm: Stable = Drugs Adenosine. B blocker. Ca channel blocker. Digoxin . Unstable = Electric DC, Synchronized

Treatment Ventricular Rhythm: Stable = Drugs Amiodarone . Lidocaine . Procainamide . Unstable = Electric DC, Non Synchronized

Normal Venous Tracing a ► Atrial Contraction c ► Isometric (V) Contraction x ► Mid-Systole v ► Venous Filling (Atrial) y ► Rapid Filling (Ventricular)

THANK YOU
Tags