DAMATH BOARDpresentation and how to play.pptx

GRACEMACADAT1 136 views 166 slides Oct 08, 2024
Slide 1
Slide 1 of 166
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111
Slide 112
112
Slide 113
113
Slide 114
114
Slide 115
115
Slide 116
116
Slide 117
117
Slide 118
118
Slide 119
119
Slide 120
120
Slide 121
121
Slide 122
122
Slide 123
123
Slide 124
124
Slide 125
125
Slide 126
126
Slide 127
127
Slide 128
128
Slide 129
129
Slide 130
130
Slide 131
131
Slide 132
132
Slide 133
133
Slide 134
134
Slide 135
135
Slide 136
136
Slide 137
137
Slide 138
138
Slide 139
139
Slide 140
140
Slide 141
141
Slide 142
142
Slide 143
143
Slide 144
144
Slide 145
145
Slide 146
146
Slide 147
147
Slide 148
148
Slide 149
149
Slide 150
150
Slide 151
151
Slide 152
152
Slide 153
153
Slide 154
154
Slide 155
155
Slide 156
156
Slide 157
157
Slide 158
158
Slide 159
159
Slide 160
160
Slide 161
161
Slide 162
162
Slide 163
163
Slide 164
164
Slide 165
165
Slide 166
166

About This Presentation

vhv


Slide Content

DAMATH SCIDAMA SEPTEMBER 18-19, 2009 BINALONAN NORTH CENTRAL SCHOOL Binalonan, Pangasinan DIVISION TRAINING PROGRAM

DAMATH 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7

1 2 4 3 5 6 7 7 6 5 3 4 2 1 1 2 4 3 5 6 7 7 6 5 3 4 2 1

DAMATH MANUAL Basically the rules in playing the Filipino checkerboard game called “dama” will be used with some modifications in integrating Mathematics and Science as follows: 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7

INTEGER DAMATH RATIONAL DAMATH RADICAL DAMATH POLYNOMIAL DAMATH

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Set the starting positions of the chips. Integer DAMATH -11 -3 -1 -1 -11 -3 4 8 4 8 -7 -9 2 -5 6 10 10 6 -5 -9 -7 2 BACK NEXT

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Set the starting positions of the chips. Rational DAMATH -11/10 -3/10 -1/10 -1/10 -11/10 -3/10 4/10 8/10 4/10 8/10 -7/10 -9/10 2/10 -5/10 6/10 10/10 10/10 6/10 -5/10 -9/10 -7/10 2/10 BACK NEXT

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Set the starting positions of the chips. Radical DAMATH -121 √18 -25 √18 -49 √8 16√32 -81 √32 -9 √2 - √8 36 √32 100 √2 64 √2 144 √8 4 √18 -121 √18 -25 √18 -49 √8 16√32 -81 √32 -9 √2 - √8 36 √32 100 √2 64 √2 144 √8 4 √18 BACK NEXT

1 2 4 3 5 6 7 7 6 5 3 4 2 1 1 2 4 3 5 6 7 7 6 5 3 4 2 1 Set the starting positions of the chips. Polynomial DAMATH -55x -15x -21xy 2 10y -45y -3x 2 y - xy 2 28y 66x 2 y 36x 2 y 78xy 2 6x -55x -15x -21xy 2 10y -45y -3x 2 y -xy 2 28y 66x 2 y 36x 2 y 78xy 2 6x BACK NEXT

After the starting positions of the chips have been set, the first player is determined by drawing lots. The first player will occupy the side of the DAMATH board where (0, 0) is located.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 A chip is allowed to move diagonally forward only to an adjoining vacant square. BLUE  (0, 3) RED  (3, 4) RED  (7, 4) BLUE  (4, 3)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 A chip has to take the opponent’s chip diagonally forward or backward, thus, pass is not allowed. Mathematical operations (+, -, x, ÷ ) will be used depending on the vacant square’s operation symbol where the Taker chip lands by jumping over the Taken chip (the latter chip has to be removed from the board after performing the indicated mathematical operation and recording the same in the scoresheet). BLUE  (2, 3) RED  (3, 4)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE x RED A chip has to take the opponent’s chip diagonally forward or backward, thus, pass is not allowed. Mathematical operations (+, -, x, ÷) will be used depending on the vacant square’s operation symbol where the Taker chip lands by jumping over the Taken chip (the latter chip has to be removed from the board after performing the indicated mathematical operation and recording the same in the scoresheet).

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 RED - BLUE

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 RED ÷ BLUE

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 RED ÷ BLUE BLUE  (6, 3)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 RED - BLUE

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE  (6, 3)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 RED ÷ BLUE

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 In taking a chip or more than one chip, the Taker chip is always the addend, minuend, multiplicand, or dividend as the case may be. BLUE - RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 In taking a chip or more than one chip, the Taker chip is always the addend, minuend, multiplicand, or dividend as the case may be. BLUE + RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 In taking a chip or more than one chip, the Taker chip is always the addend, minuend, multiplicand, or dividend as the case may be. BLUE + RED BLUE - RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 In taking a chip or more than one chip, the Taker chip is always the addend, minuend, multiplicand, or dividend as the case may be. BLUE + RED BLUE - RED BLUE ÷ RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 In taking a chip or more than one chip, the Dama Rules on “dama”, mayor dalawa or tatlo, mayor tatlo over dalawa, mayor dama, and mayor dalawa or tatlo over dama prevail. BLUE + RED Mayor DALAWA

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 In taking a chip or more than one chip, the Dama Rule on “dama”, mayor dalawa or tatlo, mayor tatlo over dalawa, mayor dama, and mayor dalawa or tatlo over dama prevail. BLUE x RED BLUE + RED Mayor DALAWA

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Mayor TATLO BLUE + RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE x RED Mayor TATLO BLUE + RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE + RED BLUE x RED Mayor TATLO BLUE + RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Mayor TATLO Over DALAWA BLUE + RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE x RED Mayor TATLO Over DALAWA BLUE + RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE x RED Mayor TATLO Over DALAWA BLUE + RED BLUE + RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Mayor DAMA BLUE DAMA - RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Mayor Dama BLUE DAMA - RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE DAMA ÷ RED Mayor Dama BLUE DAMA - RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Mayor Dalawa Over DAMA BLUE x RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE + RED Mayor Dalawa Over DAMA BLUE x RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Mayor Tatlo Over DAMA BLUE + RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE x RED Mayor Tatlo Over DAMA BLUE + RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE + RED Mayor Tatlo Over DAMA BLUE + RED BLUE x RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Mayor Tatlo Over DAMA taking Dalawa BLUE + RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Mayor Tatlo Over DAMA taking Dalawa BLUE + RED BLUE x RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Mayor Tatlo Over DAMA taking Dalawa BLUE + RED BLUE x RED BLUE + RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 When two dama chips will take same number of chips, it’s up for the player to decide which to move. BLUE DAMA - RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE DAMA ÷ RED When two dama chips will take same number of chips, it’s up for the player to decide which to move. BLUE DAMA - RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE DAMA x RED When two dama chips will take same number of chips, it’s up for the player to decide which to move.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE DAMA + RED BLUE DAMA x RED When two dama chips will take same number of chips, it’s up for the player to decide which to move.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Mayor Tatlo Over Dalawa BLUE DAMA + RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Mayor Tatlo Over Dalawa BLUE DAMA + RED BLUE DAMA x RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Mayor Tatlo Over Dalawa BLUE DAMA + RED BLUE DAMA x RED BLUE DAMA + RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 A chip is declared as “dama” upon reaching terminally on the following designated squares. For BLUE chips: (0, 7), (2, 7), (4, 7), (6, 7)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 A chip is declared as “dama” upon reaching terminally on the following designated squares. For RED chips: (1, 0), (3, 0), (5, 0), (7, 0)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 A chip is declared as “dama” upon reaching terminally on the following designated squares. For BLUE chips: (0, 7), (2, 7), (4, 7), (6, 7) For RED chips: (1, 0), (3, 0), (5, 0), (7, 0) BLUE ÷ RED RED + BLUE

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 A chip is declared as “dama” upon reaching terminally on the following designated squares. For BLUE chips: (0, 7), (2, 7), (4, 7), (6, 7) For RED chips: (1, 0), (3, 0), (5, 0), (7, 0) BLUE ÷ RED RED + BLUE RED - BLUE

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Situations where a chip is not declared as “dama” BLUE - RED

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Situations where a chip is not declared as “dama” BLUE - RED BLUE + RED RED x BLUE

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Situations where a chip is not declared as “dama” BLUE - RED BLUE + RED RED x BLUE RED ÷ BLUE

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 RED - BLUE Situations where a chip is not declared as “dama” BLUE - RED BLUE + RED RED x BLUE RED ÷ BLUE

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 It can take a chip or more than one chip . BLUE DAMA x RED A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE DAMA x RED BLUE DAMA x RED It can take a chip or more than one chip . A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE DAMA x RED BLUE DAMA x RED BLUE DAMA ÷ RED or BLUE DAMA + RED It can take a chip or more than one chip . A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE DAMA x RED It can take a chip or more than one chip . A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE DAMA ÷ RED It can take a chip or more than one chip . A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 BLUE DAMA X RED It can take a chip or more than one chip . A dama chip is allowed to move to any unoccupied square along its diagonal path. However, it can only pass through its diagonal path once and could no longer return to its original position when taking chips.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Moreover, a dama’s score is doubled in taking a chip or chips. 2(BLUE DAMA x RED)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Moreover, a dama’s score is doubled in taking a chip or chips. 2(BLUE DAMA x RED) 2(BLUE DAMA x RED) or 2(BLUE DAMA - RED)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Dama’s score is quadrupled if it takes the opponent’s dama chip. 4(BLUE DAMA x RED DAMA)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Similarly, an ordinary chip’s score is doubled if it takes a dama chip. 2(RED + BLUE DAMA)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Similarly, an ordinary chip’s score is doubled if it takes a dama chip. 2(RED + BLUE DAMA) RED x BLUE

WRITING ENTRIES IN THE SCORESHEET Player A Player B Move Score Total Move Score Total 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Note: Scores shall be entered in the scoresheet according to the game being played.

INTEGER DAMATH RATIONAL DAMATH RADICAL DAMATH POLYNOMIAL DAMATH

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 -9 -11 -3 -1 -1 -11 -3 4 8 4 8 Integer DAMATH -7 2 -5 6 10 10 6 -5 -9 -7 2

Integer DAMATH Scoresheet Player BLUE Name :__Ramon ________________________________ School:_________________________________ Grade/Year:_____________________________ Player RED Name:__ Lapus ________________________________ School:_________________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9  (0, 3)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Integer DAMATH -1 -9 -11 -3 -1 -11 -3 4 8 4 8 -7 2 -5 6 10 10 6 -5 -9 -7 2

Player BLUE Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Player RED Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9  (0, 3) -1  (1, 4) Integer DAMATH Scoresheet

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 -1 -9 Integer DAMATH -11 -3 -1 -11 -3 4 8 4 8 -7 2 -5 6 10 10 6 -5 -9 -7 2

Player BLUE Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Player RED Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9  (0, 3) -1  (1, 4) -9 + (-1) -10 -10 Integer DAMATH Scoresheet

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 -9 10 -11 -3 -1 -11 -3 4 8 4 8 -7 2 -5 6 10 6 -5 -9 -7 2 Integer DAMATH

Player BLUE Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Player RED Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9  (0, 3) -1  (1, 4) -9 + (-1) -10 -10 10 + (-9) 1 1 Integer DAMATH Scoresheet

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 -9 -1 -11 -3 -11 -3 4 8 4 8 -7 2 -5 10 6 -5 -7 2 Integer DAMATH

Player BLUE Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Player RED Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9  (0, 3) -1  (1, 4) -9 + (-1) -10 -10 10 + (-9) 1 1 -1 – (-9) 8 -2 Integer DAMATH Scoresheet

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 -11 -3 -11 -3 4 8 4 8 2 10 -5 2 Integer DAMATH -7

Player BLUE Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Player RED Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9  (0, 3) -1  (1, 4) -9 + (-1) -10 -10 10 + (-9) 1 1 -1 – (-9) 8 -2 -7 ÷ 2 -3.5 ≈ -4 -3 Integer DAMATH Scoresheet

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 -5 -11 -3 -11 -3 4 8 4 8 2 10 -5 Integer DAMATH

Player BLUE Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Player RED Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9  (0, 3) -1  (1, 4) -9 + (-1) -10 -10 10 + (-9) 1 1 -1 – (-9) 8 -2 -7 ÷ 2 -3.5 ≈ -4 -3 -11 – (-5) -6 -8 Integer DAMATH Scoresheet

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 -3 11 4 8 4 8 2 10 -5 Integer DAMATH -3

Player BLUE Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Player RED Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9  (0, 3) -1  (1, 4) -9 + (-1) -10 -10 10 + (-9) 1 1 -1 – (-9) 8 -2 -7 ÷ 2 -3.5 ≈ -4 -3 -11 – (-5) -6 -8 -3 x 4 -12 -15 Integer DAMATH Scoresheet

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 6 10 -3 -11 8 4 8 2 -5 Integer DAMATH

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 10 -3 -11 8 4 8 2 -5 Integer DAMATH

Player BLUE Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Player RED Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9  (0, 3) -1  (1, 4) -9 + (-1) -10 -10 10 + (-9) 1 1 -1 – (-9) 8 -2 -7 ÷ 2 -3.5 ≈ -4 -3 -11 – (-5) -6 -8 -3 x 4 -12 -15 10 x 6 60 52 10 + 0 10 62 Integer DAMATH Scoresheet

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 -11 -11 4 Integer DAMATH 2 6 10 -5 -5

Player BLUE Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Player RED Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9  (0, 3) -1  (1, 4) -9 + (-1) -10 -10 10 + (-9) 1 1 -1 – (-9) 8 -2 -7 ÷ 2 -3.5 ≈ -4 -3 -11 – (-5) -6 -8 -3 x 4 -12 -15 10 x 6 60 52 -5 x 10 -50 x 2 = -100 -115 10 + 0 10 62 Integer DAMATH Scoresheet Note: When a DAMA takes an ordinary chip, the score is doubled.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 4 6 -11 -11 Integer DAMATH 2 -5

Player BLUE Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Player RED Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9  (0, 3) -1  (1, 4) -9 + (-1) -10 -10 10 + (-9) 1 1 -1 – (-9) 8 -2 -7 ÷ 2 -3.5 ≈ -4 -3 -11 – (-5) -6 -8 -3 x 4 -12 -15 10 x 6 60 52 -5 x 10 -50 x 2 = -100 -115 10 + 0 10 62 6 + 4 10 x 4 = 40 102 Integer DAMATH Scoresheet Note: When a DAMA takes another DAMA, the score is quadrupled.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 6 10 -11 -11 Integer DAMATH 2 -5

Player BLUE Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Player RED Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9  (0, 3) -1  (1, 4) -9 + (-1) -10 -10 10 + (-9) 1 1 -1 – (-9) 8 -2 -7 ÷ 2 -3.5 ≈ -4 -3 -11 – (-5) -6 -8 -3 x 4 -12 -15 10 x 6 60 52 -5 x 10 -50 x 2 = -100 -115 10 + 0 10 62 10 + 6 16 x 2 = 32 -83 6 + 4 10 x 4 = 40 102 Integer DAMATH Scoresheet Note: When an ordinary chip takes a DAMA, the score is doubled.

Player BLUE Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Player RED Name:__________________________________ School:_________________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9  (0, 3) -1  (1, 4) -9 + (-1) -10 -10 10 + (-9) 1 1 -1 – (-9) 8 -2 -7 ÷ 2 -3.5 ≈ -4 -3 -11 – (-5) -6 -8 -3 x 4 -12 -15 10 x 6 60 52 -5 x 10 -50 x 2 = -100 -115 10 + 0 10 62 10 + 6 16 x 2 = 32 -83 6 + 4 10 x 4 = 40 102 RC: -5 -5 RC: -11 -11 2 2 -11x 2 -22 10 x 2 20 Total -27 Total 11 Grand Total 75 Grand Total -72 Integer DAMATH Scoresheet Note: Add all remaining chips to the total score to get the grand total. Remaining DAMA chip’s corresponding value is doubled. The player with greater score wins . HOME

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Rational DAMATH -11/10 -3/10 -1/10 -1/10 -11/10 -3/10 4/10 8/10 4/10 8/10 -7/10 -9/10 2/10 -5/10 6/10 10/10 10/10 6/10 -5/10 -9/10 -7/10 2/10

Rational DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9/10  (0, 3)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Rational DAMATH -11/10 -3/10 -1/10 -1/10 -11/10 -3/10 4/10 8/10 4/10 8/10 -7/10 -9/10 2/10 -5/10 6/10 10/10 10/10 6/10 -5/10 -9/10 -7/10 2/10

Rational DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9/10  (0, 3) -1/10  (1, 4)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Rational DAMATH -11/10 -3/10 -1/10 -1/10 -11/10 -3/10 4/10 8/10 4/10 8/10 -7/10 -9/10 2/10 -5/10 6/10 10/10 10/10 6/10 -5/10 -9/10 -7/10 2/10

Rational DAMATH Scoresheet Player BLUE Name: Ramon, Mario M __________________ School:_ JGMNHS_______________________ Grade/Year:_____________________________ Player RED Name:__ Arroyo, Gloria __________________ School:__ ADMU _________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9/10  (0, 3) -1/10  (1, 4) -9/10 + (-1/10) -10/10 -1

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Rational DAMATH -11/10 -3/10 -1/10 -11/10 -3/10 4/10 8/10 4/10 8/10 -7/10 -9/10 2/10 -5/10 6/10 10/10 10/10 6/10 -5/10 -9/10 -7/10 2/10

Rational DAMATH Scoresheet Player BLUE Name: Ramon, Mario M __________________ School:_ JGMNHS_______________________ Grade/Year:_____________________________ Player RED Name:__ Arroyo, Gloria __________________ School:__ ADMU _________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9/10  (0, 3) -1/10  (1, 4) -9/10 + (-1/10) -10/10 -1 -7/10 – ( -9/10) 2/10 1/5

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Rational DAMATH -11/10 -3/10 -1/10 -11/10 -3/10 4/10 8/10 4/10 8/10 -7/10 2/10 -5/10 6/10 10/10 10/10 6/10 -5/10 -9/10 -7/10 2/10

RationalDAMATH Scoresheet Player BLUE Name: Ramon, Mario M __________________ School:_ JGMNHS_______________________ Grade/Year:_____________________________ Player RED Name:__ Arroyo, Gloria __________________ School:__ ADMU _________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9/10  (0, 3) -1/10  (1, 4) -9/10 + (-1/10) -10/10 -1 -7/10 – ( -9/10) 2/10 1/5 6/10  (2, 3) -1

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Rational DAMATH -11/10 -3/10 -1/10 -11/10 -3/10 4/10 8/10 4/10 8/10 -7/10 2/10 -5/10 6/10 10/10 10/10 6/10 -5/10 -9/10 -7/10 2/10

Rational DAMATH Scoresheet Player BLUE Name: Ramon, Mario M __________________ School:_ JGMNHS_______________________ Grade/Year:_____________________________ Player RED Name:__ Arroyo, Gloria __________________ School:__ ADMU _________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9/10  (0, 3) -1/10  (1, 4) -9/10 + (-1/10) -10/10 -1 -7/10 – ( -9/10) 2/10 1/5 6/10  (2, 3) -1 -7/10 ÷ 6/10 -7/6 -29/30

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Rational DAMATH -11/10 -3/10 -1/10 -11/10 -3/10 4/10 8/10 4/10 8/10 -7/10 2/10 -5/10 10/10 10/10 6/10 -5/10 -9/10 -7/10 2/10

RationalDAMATH Scoresheet Player BLUE Name: Ramon, Mario M __________________ School:_ JGMNHS_______________________ Grade/Year:_____________________________ Player RED Name:__ Arroyo, Gloria __________________ School:__ ADMU _________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9/10  (0, 3) -1/10  (1, 4) -9/10 + (-1/10) -10/10 -1 -7/10 – ( -9/10) 2/10 1/5 6/10  (2, 3) -1 -7/10 ÷ 6/10 -7/6 -29/30 -3/10 X -7/10 21/10 11/10

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Rational DAMATH -11/10 4/10 8/10 -9/10 -7/10 2/10 4/10 -11/10

Rational DAMATH Scoresheet Player BLUE Name: Ramon, Mario M __________________ School:_ JGMNHS_______________________ Grade/Year:_____________________________ Player RED Name:__ Arroyo, Gloria __________________ School:__ ADMU _________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9/10  (0, 3) -1/10  (1, 4) -9/10 + (-1/10) -10/10 -1 -7/10 – ( -9/10) 2/10 1/5 6/10  (2, 3) -1 -7/10 ÷ 6/10 -7/6 -29/30 -3/10 X -7/10 21/10 11/10 4/10 + 8/10 24/10 43/10 Note: When a DAMA chip take an ordinary chip, the score is doubled .

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Rational DAMATH -11/10 -9/10 -7/10 2/10 4/10 -11/10

Rational DAMATH Scoresheet Player BLUE Name: Ramon, Mario M __________________ School:_ JGMNHS_______________________ Grade/Year:_____________________________ Player RED Name:__ Arroyo, Gloria __________________ School:__ ADMU _________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9/10  (0, 3) -1/10  (1, 4) -9/10 + (-1/10) -10/10 -1 -7/10 – ( -9/10) 2/10 1/5 6/10  (2, 3) -1 -7/10 ÷ 6/10 -7/6 -29/30 -3/10 X -7/10 21/10 11/10 4/10 + 8/10 24/10 43/10 -11/10 X 4/40 -44/25 -33/50 Note: When a DAMA chip takes a DAMA, the score is quadrupled

Rational DAMATH Scoresheet Player BLUE Name: Ramon, Mario M __________________ School:_ JGMNHS_______________________ Grade/Year:_____________________________ Player RED Name:__ Arroyo, Gloria __________________ School:__ ADMU _________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -9/10  (0, 3) -1/10  (1, 4) -9/10 + (-1/10) -10/10 -1 -7/10 – ( -9/10) 2/10 1/5 6/10  (2, 3) -1 -7/10 ÷ 6/10 -7/6 -29/30 -3/10 X -7/10 21/10 11/10 4/10 + 8/10 24/10 43/10 -11/10 X 4/40 -44/25 -33/50 R.C. -11/10 -11/5 R.C. -11/10 -11/10 2/10 1/5 -9/10 -9/10 -7/10 -7/10 TOTAL -27/10 -2 GRAND TOTAL -3.36 2.3 Note: Add all remaining chips to the total score to get the grand total. Remaining DAMA chip’s corresponding value is doubled. The player with greater score wins HOME

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Radical DAMATH -121 √18 -25 √18 -49 √8 16√32 -81 √32 -9 √2 - √8 36 √32 100 √2 64 √2 144 √8 4 √18 -121 √18 -25 √18 -49 √8 16√32 -81 √32 -9 √2 - √8 36 √32 100 √2 64 √2 144 √8 4 √18

Radical DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total 4 √18  (4, 3)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Radical DAMATH -121 √18 -25 √18 -49 √8 16√32 -81 √32 -9 √2 - √8 36 √32 100 √2 64 √2 144 √8 4 √18 -121 √18 -25 √18 -49 √8 16√32 -81 √32 -9 √2 - √8 36 √32 100 √2 64 √2 144 √8 4 √18

Radical DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total 4 √18  (4, 3) -9 √2  (5, 4)

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Radical DAMATH -121 √18 -25 √18 -49 √8 16√32 -81 √32 -9 √2 - √8 36 √32 100 √2 64 √2 144 √8 4 √18 -121 √18 -25 √18 -49 √8 16√32 -81 √32 -9 √2 - √8 36 √32 100 √2 64 √2 144 √8 4 √18

Radical DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total 4 √18  (4, 3) -9 √2  (5, 4) 4 √18 ÷ -9 √2 -4/3 -4/3

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Radical DAMATH -121 √18 -25 √18 -49 √8 16√32 -81 √32 -9 √2 - √8 36 √32 100 √2 64 √2 144 √8 4 √18 -121 √18 -25 √18 -49 √8 16√32 -81 √32 - √8 36 √32 100 √2 64 √2 144 √8 4 √18

Radical DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total 4 √18  (4, 3) -9 √2  (5, 4) 4 √18 ÷ -9 √2 -4/3 -4/3 -49 √8 ÷ 4 √18 -8 -8

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Radical DAMATH -121 √18 -25 √18 -49 √8 16√32 -81 √32 -9 √2 - √8 36 √32 100 √2 64 √2 144 √8 -121 √18 -25 √18 -49 √8 16√32 -81 √32 - √8 36 √32 100 √2 64 √2 144 √8 4 √18

Radical DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total 4 √18  (4, 3) -9 √2  (5, 4) 4 √18 ÷ -9 √2 -4/3 -4/3 -49 √8 ÷ 4 √18 -8 -8 16 √32  (6, 3) -4/3

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Radical DAMATH -121 √18 -25 √18 -49 √8 16√32 -81 √32 -9 √2 - √8 36 √32 100 √2 64 √2 144 √8 -121 √18 -25 √18 -49 √8 16√32 -81 √32 - √8 36 √32 100 √2 64 √2 144 √8 4 √18

Radical DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total 4 √18  (4, 3) -9 √2  (5, 4) 4 √18 ÷ -9 √2 -4/3 -4/3 -49 √8 ÷ 4 √18 -8 -8 16 √32  (6, 3) -4/3 -49 √8 - 16 √32 -160 √2 -8 -160 √2

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Radical DAMATH - √8 36 √32 144 √8 64 √2 144 √8 -49√8 -9 √2

Radical DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total 4 √18  (4, 3) -9 √2  (5, 4) 4 √18 ÷ -9 √2 -4/3 -4/3 -49 √8 ÷ 4 √18 -8 -8 16 √32  (6, 3) -4/3 -49 √8 - 16 √32 -160 √2 -8 -160 √2 -49 √8 + -√8 -196 √2 -8-356 √2 Note: When a DAMA chip take an ordinary chip, the score is doubled.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Radical DAMATH 36 √32 144 √8 64 √2 144 √8 -49√8 -9 √2

Radical DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total 4 √18  (4, 3) -9 √2  (5, 4) 4 √18 ÷ -9 √2 -4/3 -4/3 -49 √8 ÷ 4 √18 -8 -8 16 √32  (6, 3) -4/3 -49 √8 - 16 √32 -160 √2 -8 -160 √2 -49 √8 + -√8 -196 √2 -8-356 √2 -9 √2 x -49 √8 6912 20732/3 Note: When a DAMA take another DAMA, the score is quadrupled

Radical DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total 4 √18  (4, 3) -9 √2  (5, 4) 4 √18 ÷ -9 √2 -4/3 -4/3 -49 √8 ÷ 4 √18 -8 -8 16 √32  (6, 3) -4/3 -49 √8 - 16 √32 -160 √2 -8 -160 √2 -49 √8 + -√8 -196 √2 -8-356 √2 -9 √2 x -49 √8 6912 20732/3 R.C. -9 √2 -18 √2 R.C. 144 √8 144 √8 36 √32 36 √32 64 √2 64 √2 144 √8 144 √8 TOTAL 423 √2 352 √2 GRAND TOTAL 7643.32 -13.66 Note: Add all remaining chips to the total score to get the grand total. Remaining DAMA chip’s corresponding value is doubled. The player with greater score wins HOME

1 2 4 3 5 6 7 7 6 5 3 4 2 1 1 2 4 3 5 6 7 7 6 5 3 4 2 1 Polynomial DAMATH -55x -15x -21xy 2 10y -45y -3x 2 y - xy 2 28y 66x 2 y 36x 2 y 78xy 2 6x -55x -15x -21xy 2 10y -45y -3x 2 y -xy 2 28y 66x 2 y 36x 2 y 78xy 2 6x

Polynomial DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -3x 2 y  (2, 3)

1 2 4 3 5 6 7 7 6 5 3 4 2 1 1 2 4 3 5 6 7 7 6 5 3 4 2 1 Polynomial DAMATH -55x -15x -21xy 2 10y -45y -3x 2 y - xy 2 28y 66x 2 y 36x 2 y 78xy 2 6x -55x -15x -21xy 2 10y -45y -3x 2 y -xy 2 28y 66x 2 y 36x 2 y 78xy 2 6x

Polynomial DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -3x 2 y  (2, 3) -xy 2  (4, 3)

1 2 4 3 5 6 7 7 6 5 3 4 2 1 1 2 4 3 5 6 7 7 6 5 3 4 2 1 Polynomial DAMATH -55x -15x -21xy 2 10y -45y -3x 2 y - xy 2 28y 66x 2 y 36x 2 y 78xy 2 6x -55x -15x -21xy 2 10y -45y -3x 2 y -xy 2 28y 66x 2 y 36x 2 y 78xy 2 6x

Polynomial DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -3x 2 y  (2, 3) -xy 2  (4, 3) (-3x 2 y)( -xy 2 ) 24000 24000

1 2 4 3 5 6 7 7 6 5 3 4 2 1 1 2 4 3 5 6 7 7 6 5 3 4 2 1 Polynomial DAMATH -55x -15x -21xy 2 10y -45y -3x 2 y - xy 2 28y 66x 2 y 36x 2 y 78xy 2 6x -55x -15x -21xy 2 10y -45y -3x 2 y 28y 66x 2 y 36x 2 y 78xy 2 6x

Polynomial DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -3x 2 y  (2, 3) -xy 2  (4, 3) (-3x 2 y)( -xy 2 ) 24000 24000 -15x – ( -3x 2 y) 99 99

1 2 4 3 5 6 7 7 6 5 3 4 2 1 1 2 4 3 5 6 7 7 6 5 3 4 2 1 Polynomial DAMATH -55x -15x -21xy 2 10y -45y - xy 2 28y 66x 2 y 36x 2 y 78xy 2 6x -55x -15x -21xy 2 10y -45y -3x 2 y 28y 66x 2 y 36x 2 y 78xy 2 6x

Polynomial DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -3x 2 y  (2, 3) -xy 2  (4, 3) (-3x 2 y)( -xy 2 ) 24000 24000 -15x – ( -3x 2 y) 63 63 -xy 2 (2,3) 24000

1 2 4 3 5 6 7 7 6 5 3 4 2 1 1 2 4 3 5 6 7 7 6 5 3 4 2 1 Polynomial DAMATH -55x -15x -21xy 2 10y -45y - xy 2 28y 66x 2 y 36x 2 y 78xy 2 6x -55x -15x -21xy 2 10y -45y -3x 2 y 28y 66x 2 y 36x 2 y 78xy 2 6x

Polynomial DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -3x 2 y  (2, 3) -xy 2  (4, 3) (-3x 2 y)( -xy 2 ) 24000 24000 -15x – ( -3x 2 y) 99 99 -xy 2 (2,3) 24000 -15x ÷ (-xy 2 ) 0.6 99.6

1 2 4 3 5 6 7 7 6 5 3 4 2 1 1 2 4 3 5 6 7 7 6 5 3 4 2 1 Polynomial DAMATH -55x -15x -21xy 2 10y -45y 28y 66x 2 y 36x 2 y 78xy 2 6x -55x -15x -21xy 2 10y -45y -3x 2 y 28y 66x 2 y 36x 2 y 78xy 2 6x

Polynomial DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -3x 2 y  (2, 3) -xy 2  (4, 3) (-3x 2 y)( -xy 2 ) 24000 24000 -15x – ( -3x 2 y) 99 99 -xy 2 (2,3) 24000 -15x ÷ (-xy 2 ) 0.6 99.6 (-15x)(-15x ) 24000

1 2 4 3 5 6 7 7 6 5 3 4 2 1 1 2 4 3 5 6 7 7 6 5 3 4 2 1 Polynomial DAMATH -55x 78xy 2 -55x -45y 78xy 2 66x 2 y

Polynomial DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -3x 2 y  (2, 3) -xy 2  (4, 3) (-3x 2 y)( -xy 2 ) 24000 24000 -15x – ( -3x 2 y) 99 99 -xy 2 (2,3) 24000 -15x ÷ (-xy 2 ) 0.6 99.6 (-15x)(-15x ) 24000 78xy 2 ÷ (-55x) -22.69 76.91 Note: When a DAMA chip take an ordinary chip, the score is doubled.

1 2 4 3 5 6 7 7 6 5 3 4 2 1 1 2 4 3 5 6 7 7 6 5 3 4 2 1 Polynomial DAMATH 78xy 2 -55x -45y 78xy 2 66x 2 y

Polynomial DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -3x 2 y  (2, 3) -xy 2  (4, 3) (-3x 2 y)( -xy 2 ) 24000 24000 -15x – ( -3x 2 y) 99 99 -xy 2 (2,3) 24000 -15x ÷ (-xy 2 ) 0.6 99.6 (-15x)(-15x ) 24000 78xy 2 ÷ (-55x) -22.69 76.91 78xy 2 ÷ 78xy 2 4 24004 Note: When a DAMA take another DAMA, the score is quadrupled

Polynomial DAMATH Scoresheet Player BLUE Name:__ RAMON, MARIO M_____________ School:___ JGMNHS_____________________ Grade/Year:_____________________________ Player RED Name:_ ARROYO, GLORIA________________ School:__ ADMU__________________________ Grade/Year:_____________________________ Move Score Total Move Score Total -3x 2 y  (2, 3) -xy 2  (4, 3) (-3x 2 y)( -xy 2 ) 24000 24000 -15x – ( -3x 2 y) 99 99 -xy 2 (2,3) 24000 -15x ÷ (-xy 2 ) 0.6 99.6 (-15x)(-15x ) 24000 78xy 2 ÷ (-55x) -22.69 76.91 78xy 2 ÷ 78xy 2 4 24004 R.C. 78xy 2 624 -45y -135 66xy 2 -55x TOTAL 624 -135 GRAND TOTAL 24628 -58.09 Note: Add all remaining chips to the total score to get the grand total. Remaining DAMA chip’s corresponding value is doubled. The player with greater score wins

OTHER RULES A move [e.g. 25  (6, 3)] is good only at the most for one (1) minute including its corresponding entries in the scoresheet; while the game’s duration is twenty (20) minutes. It will be the responsibility of the arbiter to remind the player to make a move and write entries in the scoresheet. This will be done 10 seconds before the 1-minute time frame. If in case a player did not finish writing the entries in the scoresheet after 1 minute, the time will be stopped by the arbiter. This is to give the player time to finish writing in the scoresheet. The extra time is exclusive of the twenty-minute game duration. A player may consume the whole minute in taking chip/s and writing the entries in the scoresheet. A player is required to take chip/s when there is still time left (remaining second/s of the 20-minute game duration). Use of calculator is allowed.

The game ends when any of the following situations occur: Repetitive moves of any or both players. If no show of one player is declared after ten minutes. A player resigns or refuses to move. A player’s chip is cornered. A player has no more chip to move. The 20-minute game duration ended.

The remaining chips have to be added to the respective player’s total scores. “DAMA” chip’s corresponding value is doubled. The player with the greater total score is declared winner for which he/she is entitled to one (1) point in the tally sheet of contestants or one-half (0.5) point in case of a draw. In case two or more players have the same number of winnings, their previous games will be considered. Whoever won in these games prevails. If a winner cannot be determined from these games, a 10-minute rematch shall be done. Players are not allowed to resign in the rematch. Point System (Adding the Scores in each Game/Rematch) shall be followed if no player emerges as winner after the rematch.

Scoresheets will be reviewed by a panel of reviewers. Corrections will be done to the wrong entries which were not checked during the game. The time spent in correcting the entries is exclusive of the 20-minute game duration. Only one scoresheet is allowed to be accomplished alternately by the two players whereby incorrect entries shall be their responsibility. In case of incorrect entries in the scoresheet, a player has to immediately call the attention of the competition facilitator by raising one’s hand, that is, after stopping the time. As determined by the said facilitator, the appropriate corrections will be done by the erring player inasmuch as the former’s decision is final and unappealable.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 Repetitive moves of any or both players.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 A player’s chip is cornered.

1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 1 2 4 3 5 6 7 A player has no more chip to move.
Tags