DATA ANALYSIS PRESENTATION FOR REVISION.

soffiyuddin 15 views 96 slides Sep 14, 2024
Slide 1
Slide 1 of 96
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96

About This Presentation

DATA ANALYSIS


Slide Content

Introduction to Data Analysis

Basics
Levels of
Measurement
Nominal
Ordinal
Interval
Ratio
Variables
Independent
Dependent
Moderating
Mediating
Control
Key Terms
Concepts
Construct
Variable
Definition
Dictionary
Operational

Data Analysis Process

DATA ANALYSIS
DATA ENTRY
STAGES OF DATA ANALYSIS
ERROR
CHECKING
AND
VERIFICATION
CODING
EDITING

Introduction
Preparation of Data
Editing, Handling Blank responses, Coding,
Categorization and Data Entry
These activities ensure accuracy of the data and
its conversion from raw form to reduced data
Exploring, Displaying and Examining
data
Breaking down, inspecting and rearranging data
to start the search for meaningful descriptions,
patterns and relationship.

Coding Rules
Categories
should be
Appropriate to the
research problem
Exhaustive
Mutually exclusive
Derived from one
classification principle

Appropriateness
Let’s say your population is
students at institutions of higher
learning
What is you age group?
 15 – 25 years
 26 – 35 years
 36 – 45 years
 Above 45 years

Exhaustiveness
What is your race?
 Malay
 Chinese
 Indians
 Others

Mutual Exclusivity
What is your occupation type?
Professional Crafts
 Managerial  Operatives
 Sales  Unemployed
 Clerical  Housewife
 Others

Single Dimension
What is your occupation type?
 Professional Crafts
 Managerial  Operatives
 Sales  Unemployed
 Clerical  Housewife
 Others

Coding Open-ended Responses

Coding Open Ended Questions

Handling Blank Responses
How do we take care of missing
responses?
If > 25% missing, throw out the questionnaire
Other ways of handling
•Use the midpoint of the scale
•Ignore (system missing)
•Mean of those responding
•Mean of the respondent
•Random number

How to Select a Test
Two-Sample Tests
____________________________________________
k-Sample Tests
____________________________________________
Measurement
Scale One-Sample Case Related Samples
Independent
Samples Related Samples
Independent
Samples
Nominal
 Binomial
 x
2
one-sample test
 McNemar
 Fisher exact
test
 x
2
two-samples
test
 Cochran Q
 x
2
for k samples
Ordinal
 Kolmogorov-
Smirnov one-sample
test
 Runs test
 Sign test
Wilcoxon
matched-pairs
test
 Median test
Mann-Whitney
U
Kolmogorov-
Smirnov
Wald-Wolfowitz
 Friedman two-
way ANOVA
 Median
extension
Kruskal-Wallis
one-way ANOVA
Interval and
Ratio
 t-test
 Z test
 t-test for paired
samples
 t-test
 Z test
 Repeated-
measures ANOVA
 One-way
ANOVA
 n-way ANOVA

Data Transformation
Weights
Assigning numbers to responses on a
pre-determined rule
Respecification of the Variable
Transforming existing data to form new
variables or items

Recode

Compute

Scale Transformation
Reason for Transformation
to improve interpretation and
compatibility with other data sets
to enhance symmetry and stabilize
spread
improve linear relationship between
the variables (Standardized score)
s
XX
z
i
-

Data Transformation
Section 1 - Computer Anxiety
Computers make me feel
uncomfortable
1234567
I get a sinking feeling when I
think of trying to use a computer
1234567
Computers scare me 1234567
I feel comfortable using a
computer
1234567
Working with a computer makes
me nervous
1234567

Sample SPSS Codebook

Research Model
Attitude
Intention to
Share
Information
Subjective
norm
5 items
4 items
3 items
Perceived
Behavioral
Control
4 items
Actual
Sharing of
Information
5 items

Factor Analysis - Command

Assumptions in FA
KMO and Bartlett's Test
.882
2878.230
78
.000
Kaiser-Meyer-Olkin Measure of Sampling
Adequacy.
Approx. Chi-Square
df
Sig.
Bartlett's Test of
Sphericity
KMO should be > 0.5
Bartlett’s Test should
be significant ie; p <
0.05
Question:
How valid is our instrument?

Measure of Sampling Adequacy
MSA Comment
0.80 and above Meritorious
0.70 – 0.80 Middling
0.60 – 0.70 Mediocre
0.50 – 0.60 Miserable
Below 0.50 Unacceptable

Assumptions in FA
Anti-image Matrices
.045 -.021 -.032 -.036 -.029 .014 -.013 -.027 .027 -.003 -.007 .011 -.011
-.021 .123 -.016 -.018 -.015 -.020 .000 .016 -.038 -.013 -.009 .004 -.010
-.032 -.016 .107 .012 -.018 -.015 .021 -.010 -.014 -.005 .009 -.020 .014
-.036 -.018 .012 .161 -.014 .000 -.013 .033 -.020 .001 .022 -.007 -.005
-.029 -.015 -.018 -.014 .106 -.019 .005 .024 -.012 .017 -.006 -.007 .022
.014 -.020 -.015 .000 -.019 .317 -.121 -.063 .033 -.003 -.003 .070 -.052
-.013 .000 .021 -.013 .005 -.121 .233 -.066 -.072 .014 -.003 -.041 .029
-.027 .016 -.010 .033 .024 -.063 -.066 .223 -.127 -.021 .035 .002 .004
.027 -.038 -.014 -.020 -.012 .033 -.072 -.127 .375 .004 -.008 -.001 .022
-.003 -.013 -.005 .001 .017 -.003 .014 -.021 .004 .253 -.161 .013 -.069
-.007 -.009 .009 .022 -.006 -.003 -.003 .035 -.008 -.161 .243 -.076 .011
.011 .004 -.020 -.007 -.007 .070 -.041 .002 -.001 .013 -.076 .247 -.164
-.011 -.010 .014 -.005 .022 -.052 .029 .004 .022 -.069 .011 -.164 .250
.863
a
-.286 -.458 -.421 -.420 .118 -.130 -.272 .210 -.031 -.067 .100 -.108
-.286 .961
a
-.142 -.131 -.131 -.100 -.002 .094 -.179 -.073 -.050 .025 -.054
-.458 -.142 .936
a
.095 -.165 -.084 .131 -.064 -.071 -.030 .055 -.125 .087
-.421 -.131 .095 .942
a
-.105 .001 -.066 .175 -.081 .003 .111 -.036 -.027
-.420 -.131 -.165 -.105 .939
a
-.102 .031 .154 -.058 .105 -.039 -.044 .134
.118 -.100 -.084 .001 -.102 .891
a
-.447 -.236 .095 -.012 -.010 .252 -.185
-.130 -.002 .131 -.066 .031 -.447 .899
a
-.290 -.243 .060 -.015 -.171 .119
-.272 .094 -.064 .175 .154 -.236 -.290 .879
a
-.438 -.088 .153 .007 .019
.210 -.179 -.071 -.081 -.058 .095 -.243 -.438 .886
a
.014 -.025 -.005 .073
-.031 -.073 -.030 .003 .105 -.012 .060 -.088 .014 .785
a
-.650 .052 -.273
-.067 -.050 .055 .111 -.039 -.010 -.015 .153 -.025 -.650 .767
a
-.311 .046
.100 .025 -.125 -.036 -.044 .252 -.171 .007 -.005 .052 -.311 .732
a
-.662
-.108 -.054 .087 -.027 .134 -.185 .119 .019 .073 -.273 .046 -.662 .749
a
Att1
Att2
Att3
Att4
Att5
Sn1
Sn2
Sn3
Sn4
Pbc1
Pbc2
Pbc3
Pbc4
Att1
Att2
Att3
Att4
Att5
Sn1
Sn2
Sn3
Sn4
Pbc1
Pbc2
Pbc3
Pbc4
Anti-image Covariance
Anti-image Correlation
Att1 Att2 Att3 Att4 Att5 Sn1 Sn2 Sn3 Sn4 Pbc1 Pbc2 Pbc3 Pbc4
Measures of Sampling Adequacy(MSA)a.

How many Factors?
Total Variance Explained
6.730 51.772 51.772 6.730 51.772 51.772 4.476 34.427 34.427
3.328 25.596 77.368 3.328 25.596 77.368 3.287 25.288 59.715
.962 7.400 84.769 .962 7.400 84.769 3.257 25.054 84.769
.439 3.376 88.145
.432 3.325 91.470
.232 1.786 93.256
.215 1.651 94.907
.183 1.407 96.313
.131 1.010 97.324
.124 .951 98.275
.102 .785 99.059
.088 .673 99.733
.035 .267 100.000
Component
1
2
3
4
5
6
7
8
9
10
11
12
13
Total
% of
VarianceCumulative % Total
% of
VarianceCumulative % Total
% of
VarianceCumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings
Extraction Method: Principal Component Analysis.

How many Factors? - Scree Plot
13121110987654321
Component Number
7
6
5
4
3
2
1
0
E
i
g
e
n
v
a
l
u
e
Scree Plot

Rotation – Orthogonal or Non
Orthogonal Factor RotationOrthogonal Factor Rotation
Unrotated Unrotated
Factor IIFactor II
Unrotated Unrotated
Factor IFactor I
Rotated Rotated
Factor IFactor I
Rotated Factor IIRotated Factor II
-1.0
-.50
0
+.50
+1.0
-.50
-1.0
+1.0
+.50
V
1
V
2
V
3
V
4
V
5
Unrotated Unrotated
Factor IIFactor II
Unrotated Unrotated
Factor IFactor I
Oblique Oblique
Rotation: Rotation:
Factor IFactor I
Orthogonal Rotation: Orthogonal Rotation:
Factor IIFactor II
-1.0
-.50
0
+.50
+1.0
-.50
-1.0
+1.0
+.50
V
1
V
2
V
3
V
4
V
5
Orthogonal Orthogonal
Rotation: Factor IRotation: Factor I
Oblique Rotation: Oblique Rotation:
Factor IIFactor II
Oblique Factor RotationOblique Factor Rotation

Assigning Questions
Amount of shared, or common
variance, among the variables
General guidelines all communnalities
should be above 0.5
Communalities
1.000 .967
1.000 .910
1.000 .910
1.000 .880
1.000 .928
1.000 .738
1.000 .847
1.000 .857
1.000 .749
1.000 .806
1.000 .815
1.000 .805
1.000 .808
Att1
Att2
Att3
Att4
Att5
Sn1
Sn2
Sn3
Sn4
Pbc1
Pbc2
Pbc3
Pbc4
InitialExtraction
Extraction Method: Principal Component Analysis.
Rotated Component Matrix
a
.897 .146 .377
.855 .197 .375
.871 .128 .369
.885 .098 .296
.907 .053 .319
.401 -.046 .758
.409 -.013 .825
.376 -.070 .843
.264 -.081 .820
.129 .888 .025
.106 .894 -.062
.067 .892 -.064
.076 .894 -.043
Att1
Att2
Att3
Att4
Att5
Sn1
Sn2
Sn3
Sn4
Pbc1
Pbc2
Pbc3
Pbc4
1 2 3
Component
Extraction Method: Principal Component Analysis.
Rotation Method: Varimax with Kaiser Normalization.
Rotation converged in 5 iterations.a.

Significant Loadings
Factor Loading Sample Size Needed
0.30 350
0.35 250
0.40 200
0.45 150
0.50 120
0.55 100
0.60 85
0.65 70
0.70 60
0.75 50

Table in Report

Component
1 2 3
Att1 .897 .146 .377
Att2 .855 .197 .375
Att3 .871 .128 .369
Att4 .885 .098 .296
Att5 .907 .053 .319
Sn1 .401 -.046 .758
Sn2 .409 -.013 .825
Sn3 .376 -.070 .843
Sn4 .264 -.081 .820
Pbc1 .129 .888 .025
Pbc2 .106 .894 -.062
Pbc3 .067 .892 -.064
Pbc4 .076 .894 -.043
Eigenvalue 4.476 3.287 3.257
% Variance
(84.77)
34.43 25.29 25.05

Reliability - Command

Reliability
Reliability Statistics
.977 5
Cronbach's
Alpha N of Items
Item-Total Statistics
15.25 6.681 .973 .965
15.26 6.560 .925 .972
15.24 6.906 .929 .972
15.21 6.825 .900 .975
15.25 6.555 .935 .970
Att1
Att2
Att3
Att4
Att5
Scale Mean if
Item Deleted
Scale
Variance if
Item Deleted
Corrected
Item-Total
Correlation
Cronbach's
Alpha if Item
Deleted
Question:
How reliable are our instruments?
Should be
preferably > 0.3

Reliability
Reliability Statistics
.912 4
Cronbach's
Alpha N of Items
Item-Total Statistics
11.20 4.243 .761 .900
11.03 4.135 .855 .868
11.00 4.021 .856 .867
11.21 4.250 .736 .909
Sn1
Sn2
Sn3
Sn4
Scale Mean if
Item Deleted
Scale
Variance if
Item Deleted
Corrected
Item-Total
Correlation
Cronbach's
Alpha if Item
Deleted

Reliability
Reliability Statistics
.919 4
Cronbach's
Alpha N of Items
Item-Total Statistics
10.48 4.984 .814 .895
10.45 4.793 .826 .892
10.43 5.042 .809 .897
10.40 5.246 .814 .897
Pbc1
Pbc2
Pbc3
Pbc4
Scale Mean if
Item Deleted
Scale
Variance if
Item Deleted
Corrected
Item-Total
Correlation
Cronbach's
Alpha if Item
Deleted

Reliability
Reliability Statistics
.966 5
Cronbach's
Alpha N of Items
Item-Total Statistics
15.28 6.591 .951 .951
15.28 6.612 .888 .961
15.29 6.553 .901 .959
15.28 6.716 .877 .962
15.24 6.445 .904 .958
Intent1
Intent2
Intent3
Intent4
Intent5
Scale Mean if
Item Deleted
Scale
Variance if
Item Deleted
Corrected
Item-Total
Correlation
Cronbach's
Alpha if Item
Deleted

Table in Report
Variable N of ItemItem
Deleted
Alpha
Attitude 5 - 0.977
SN 4 - 0.912
Pbcontrol 4 - 0.919
Intention 5 - 0.966
Actual 3 - 0.771

Example - Recoding
Perceived Enjoyment
PE1 The actual process of
using Instant Messenger is
pleasant
1 2 3 4 5 6 7
PE2 I have fun using Instant
Messenger
1 2 3 4 5 6 7
PE3 Using Instant Messenger
bores me
1 2 3 4 5 6 7
PE4 Using Instant Messenger
provides me with a lot of
enjoyment
1 2 3 4 5 6 7
PE5 I enjoy using Instant
Messenger
1 2 3 4 5 6 7

Recoding - Command

Data before Transformation

Computing New Variable - Command

Data after Transformation

Frequencies - Command

Frequencies
Gender
144 75.0 75.0 75.0
48 25.0 25.0 100.0
192 100.0 100.0
Male
Female
Total
Valid
Frequency PercentValid Percent
Cumulative
Percent
Current Position
34 17.7 17.7 17.7
66 34.4 34.4 52.1
54 28.1 28.1 80.2
32 16.7 16.7 96.9
6 3.1 3.1 100.0
192 100.0 100.0
Technician
Engineer
Sr Engineer
Manager
Above manager
Total
Valid
Frequency PercentValid Percent
Cumulative
Percent
Question:
1.Is our sample representative?
2.Data entry error

Table in Report
Frequency Percentage
Gender
Male
Female
Position
Technician
Engineer
Sr Engineer
Manager
Above manager
144
48
34
66
54
32
6
75.0
25.0
17.7
34.4
28.1
16.7
3.1

Descriptives - Command

Descriptives
Descriptive Statistics
192 19 53 33.39 8.823 .667 .175 -.557 .349
192 1 18 5.36 4.435 1.448 .175 1.333 .349
192 1 28 9.04 7.276 1.051 .175 -.025 .349
192 2.00 5.00 3.8104 .64548 -.480 .175 .242 .349
192 2.00 5.00 3.7031 .67034 -.101 .175 .755 .349
192 2.00 5.00 3.4792 .73672 .015 .175 -.028 .349
192 2.00 5.00 3.8188 .63877 -.528 .175 .687 .349
192 2.33 5.00 4.0625 .58349 -.361 .175 -.328 .349
192
Age
Years working in the
organization
Total years of
working experience
Attitude
subjective
Pbcontrol
Intention
Actual
Valid N (listwise)
StatisticStatisticStatisticStatisticStatisticStatisticStd. ErrorStatisticStd. Error
N Minimum Maximum Mean Std.
Deviation
Skewness Kurtosis
Question:
1.Is there variation in our data?
2.What is the level of the phenomenon we are measuring?

Table in Report
Mean Std. Deviation
Attitude
3.81 0.65
Subjective Norm
3.70 0.67
Behavioral Control
3.48 0.74
Intention
3.82 0.64
Actual
4.06 0.58

Chi Square Test - Command

Crosstabulation
Gender * Intention Level Crosstabulation
110 34 144
76.4% 23.6% 100.0%
70.5% 94.4% 75.0%
57.3% 17.7% 75.0%
46 2 48
95.8% 4.2% 100.0%
29.5% 5.6% 25.0%
24.0% 1.0% 25.0%
156 36 192
81.3% 18.8% 100.0%
100.0% 100.0% 100.0%
81.3% 18.8% 100.0%
Count
% within Gender
% within Intention Level
% of Total
Count
% within Gender
% within Intention Level
% of Total
Count
% within Gender
% within Intention Level
% of Total
Male
Female
Gender
Total
Low High
Intention Level
Total
Chi-Square Tests
8.934
b
1 .003
7.704 1 .006
11.274 1 .001
.002 .001
8.888 1 .003
192
Pearson Chi-Square
Continuity Correction
a
Likelihood Ratio
Fisher's Exact Test
Linear-by-Linear
Association
N of Valid Cases
Value df
Asymp. Sig.
(2-sided)
Exact Sig.
(2-sided)
Exact Sig.
(1-sided)
Computed only for a 2x2 tablea.
0 cells (.0%) have expected count less than 5. The minimum expected count is 9.
00.
b.
Question:
Is level of sharing dependent on gender?

T-test - Command

t-test
(2 Independent)
Group Statistics
144 3.9000 .60302 .05025
48 3.5750 .68619 .09904
Gender
Male
Female
Intention
N Mean
Std.
Deviation
Std. Error
Mean
Independent Samples Test
3.591 .060 3.122 190 .002 .32500 .10410 .11965 .53035
2.926 72.729 .005 .32500 .11106 .10364 .54636
Equal variances
assumed
Equal variances
not assumed
Intention
F Sig.
Levene's Test for
Equality of Variances
t df Sig. (2-tailed)
Mean
Difference
Std. Error
DifferenceLower Upper
95% Confidence
Interval of the
Difference
t-test for Equality of Means
Question:
Does intention to share vary by gender?

Paired t-test - Command

t-test
(2 Dependent)
Paired Samples Statistics
3.8188 192 .63877 .04610
4.0625 192 .58349 .04211
Intention
Actual
Pair
1
Mean N
Std.
Deviation
Std. Error
Mean
Paired Samples Correlations
192 .817 .000Intention & ActualPair 1
N Correlation Sig.
Paired Samples Test
-.24375 .37326 .02694 -.29688 -.19062 -9.049 191 .000Intention - ActualPair 1
Mean
Std.
Deviation
Std. Error
Mean Lower Upper
95% Confidence
Interval of the
Difference
Paired Differences
t df Sig. (2-tailed)
Question:
Are there differences between intention to
share and actual sharing behavior?

One Way ANOVA - Command

One way ANOVA
(k independent)
ANOVA
Intention
7.864 4 1.966 5.247 .001
70.068 187 .375
77.933 191
Between Groups
Within Groups
Total
Sum of
Squares df Mean Square F Sig.
Intention
Duncan
a,b
66 3.6424
32 3.6625
34 3.8941
54 4.0000
6 4.5333
.101 1.000
Current Position
Engineer
Manager
Technician
Sr Engineer
Above manager
Sig.
N 1 2
Subset for alpha = .05
Means for groups in homogeneous subsets are displayed.
Uses Harmonic Mean Sample Size = 19.157.a.
The group sizes are unequal. The harmonic mean
of the group sizes is used. Type I error levels are
not guaranteed.
b.
Question:
Does intention vary by position?

Mann-Whitney - Command

Mann-Whitney
(2 independent)
Question:
Does the variables vary by gender?
Ranks
144 103.64 14924.00
48 75.08 3604.00
192
Gender
Male
Female
Total
Intention
N Mean Rank Sum of Ranks
Test Statistics
a
2428.000
3604.000
-3.266
.001
Mann-Whitney U
Wilcoxon W
Z
Asymp. Sig. (2-tailed)
Intention
Grouping Variable: Gendera.

Kruskal-Wallis - Command

Kruskal-Wallis
(k independent)
Question:
Does the variables vary by position?
Ranks
34 101.32
66 79.68
54 114.54
32 81.63
6 171.17
192
Position
Technician
Engineer
Sr Engineer
Manager
Above manager
Total
Intention
N Mean Rank
Test Statistics
a,b
28.179
4
.000
Chi-Square
df
Asymp. Sig.
Intention
Kruskal Wallis Testa.
Grouping Variable: Positionb.

Correlation - Command

Correlation
(Interval/ratio)
Question:
Are the variables related?
Correlations
1 .697** .212** .808** .606**
.000 .003 .000 .000
192 192 192 192 192
.697** 1 -.052 .653** .552**
.000 .471 .000 .000
192 192 192 192 192
.212** -.052 1 .281** .031
.003 .471 .000 .665
192 192 192 192 192
.808** .653** .281** 1 .817**
.000 .000 .000 .000
192 192 192 192 192
.606** .552** .031 .817** 1
.000 .000 .665 .000
192 192 192 192 192
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Pearson Correlation
Sig. (2-tailed)
N
Attitude
subjective
Pbcontrol
Intention
Actual
AttitudesubjectivePbcontrolIntentionActual
Correlation is significant at the 0.01 level (2-tailed).**.

Table Presentation
AttitudesubjectivePbcontrolIntentionActual
Attitude
1
subjective
.740** 1
Pbcontrol
.201** -.047 1
Intention
.885** .662** .326** 1
Actual .660** .553** .059 .805** 1
*p< 0.05, **p< 0.01

Correlation
(Ordinal)
Correlations
1.000 .043 -.415** -.019 -.090
. .314 .000 .417 .154
130 130 130 130 130
.043 1.000 -.476** -.263** -.259**
.314 . .000 .001 .001
130 130 130 130 130
-.415** -.476** 1.000 .117 .160*
.000 .000 . .092 .035
130 130 130 130 130
-.019 -.263** .117 1.000 .029
.417 .001 .092 . .372
130 130 130 130 130
-.090 -.259** .160* .029 1.000
.154 .001 .035 .372 .
130 130 130 130 130
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Correlation Coefficient
Sig. (1-tailed)
N
Pay
Promotion
Work
Supervision
Coworkers
Spearman's rho
Pay Promotion Work SupervisionCoworkers
Correlation is significant at the 0.01 level (1-tailed).**.
Correlation is significant at the 0.05 level (1-tailed).*.
Question:
Are the variables related?

Friedman Test - Command

Friedman
(k related samples)
Question:
Is the rating similar?
Ranks
2.34
2.67
2.70
2.29
Sn1
Sn2
Sn3
Sn4
Mean Rank
Test Statistics
a
192
43.149
3
.000
N
Chi-Square
df
Asymp. Sig.
Friedman Testa.

Regression - Command

Multiple
Regression
Question:
Which variables can explain the intention to
share?
Variables Entered/Removed
b
Pbcontrol,
subjective,
Attitude
a
.Enter
Model
1
Variables
Entered
Variables
Removed Method
All requested variables entered.a.
Dependent Variable: Intentionb.
Model Summary
b
.832
a
.693 .688 .35703 1.501
Model
1
R R Square
Adjusted
R Square
Std. Error of
the Estimate
Durbin-
Watson
Predictors: (Constant), Pbcontrol, subjective, Attitudea.
Dependent Variable: Intentionb.

Multiple Regression
ANOVA
b
53.968 3 17.989 141.127 .000
a
23.964 188 .127
77.933 191
Regression
Residual
Total
Model
1
Sum of
Squares df Mean Square F Sig.
Predictors: (Constant), Pbcontrol, subjective, Attitudea.
Dependent Variable: Intentionb.
Coefficients
a
.191 .197 .971 .333
.601 .059 .607 10.103 .000 .453 2.210
.227 .056 .238 4.043 .000 .472 2.116
.143 .037 .165 3.821 .000 .877 1.140
(Constant)
Attitude
subjective
Pbcontrol
Model
1
B Std. Error
Unstandardized
Coefficients
Beta
Standardized
Coefficients
t Sig. Tolerance VIF
Collinearity Statistics
Dependent Variable: Intentiona.

Assumptions (Multicollinearity)
Collinearity Diagnostics
a
3.936 1.000 .00 .00 .00 .00
.043 9.581 .00 .02 .10 .55
.013 17.195 .91 .19 .02 .21
.008 22.890 .09 .79 .88 .24
Dimension
1
2
3
4
Model
1
Eigenvalue
Condition
Index (Constant)AttitudesubjectivePbcontrol
Variance Proportions
Dependent Variable: Intentiona.

Assumptions (Outliers)
Casewise Diagnostics
a
3.152 5.00 3.8748 1.12520
4.042 5.00 3.5570 1.44295
3.071 4.20 3.1037 1.09631
3.152 5.00 3.8748 1.12520
4.042 5.00 3.5570 1.44295
3.071 4.20 3.1037 1.09631
Case Number
70
82
83
166
178
179
Std. ResidualIntention
Predicted
Value Residual
Dependent Variable: Intentiona.

After Removing Outliers
Model Summary
b
.900
a
.810 .807 .27373 1.725
Model
1
R R Square
Adjusted
R Square
Std. Error of
the Estimate
Durbin-
Watson
Predictors: (Constant), Pbcontrol, subjective, Attitudea.
Dependent Variable: Intentionb.
Coefficients
a
.067 .153 .441 .659
.758 .050 .784 15.281 .000 .396 2.523
.085 .047 .091 1.801 .073 .412 2.426
.145 .029 .173 5.015 .000 .875 1.143
(Constant)
Attitude
subjective
Pbcontrol
Model
1
B Std. Error
Unstandardized
Coefficients
Beta
Standardized
Coefficients
t Sig. Tolerance VIF
Collinearity Statistics
Dependent Variable: Intentiona.
ANOVA
b
58.261 3 19.420 259.182 .000
a
13.637 182 .075
71.898 185
Regression
Residual
Total
Model
1
Sum of
Squares df Mean Square F Sig.
Predictors: (Constant), Pbcontrol, subjective, Attitudea.
Dependent Variable: Intentionb.

Assumptions – Advanced Diagnostics
(Hair et al., 2006)
Residuals Statistics
a
2.1329 4.9380 3.8188 .53156 192
-3.172 2.106 .000 1.000 192
.027 .111 .048 .020 192
2.1423 4.9493 3.8179 .53167 192
-.96087 1.44295 .00000 .35421 192
-2.691 4.042 .000 .992 192
-2.731 4.253 .001 1.012 192
-.98909 1.59761 .00086 .36911 192
-2.779 4.461 .004 1.031 192
.130 17.495 2.984 3.453 192
.000 .485 .011 .051 192
.001 .092 .016 .018 192
Predicted Value
Std. Predicted Value
Standard Error of
Predicted Value
Adjusted Predicted Value
Residual
Std. Residual
Stud. Residual
Deleted Residual
Stud. Deleted Residual
Mahal. Distance
Cook's Distance
Centered Leverage
Value
Minimum Maximum Mean
Std.
Deviation N
Dependent Variable: Intentiona.

Assumptions (Normality)
6420-2-4
Regression Standardized Residual
70
60
50
40
30
20
10
0
F
r
e
q
u
e
n
c
y
Mean = -1.99E-17
Std. Dev. = 0.992
N = 192
Dependent Variable: Intention
Histogram

Assumptions
(Normality of the Error term)
1.00.80.60.40.20.0
Observed Cum Prob
1.0
0.8
0.6
0.4
0.2
0.0
E
x
p
e
c
t
e
d

C
u
m

P
r
o
b
Dependent Variable: Intention
Normal P-P Plot of Regression Standardized Residual

Assumptions (Constant Variance)
5.004.504.003.503.002.502.00
Intention
4
2
0
-2R
e
g
r
e
s
s
i
o
n

S
t
u
d
e
n
t
i
z
e
d
R
e
s
i
d
u
a
l
Dependent Variable: Intention
Scatterplot

Assumptions (Linearity)
10-1-2
Attitude
1.5
1.0
0.5
0.0
-0.5
-1.0
-1.5
I
n
t
e
n
t
i
o
n
Dependent Variable: Intention
Partial Regression Plot

Assumptions (Linearity)
210-1-2
subjective
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
I
n
t
e
n
t
i
o
n
Dependent Variable: Intention
Partial Regression Plot

Assumptions (Linearity)
10-1-2
Pbcontrol
2.0
1.5
1.0
0.5
0.0
-0.5
-1.0
I
n
t
e
n
t
i
o
n
Dependent Variable: Intention
Partial Regression Plot

Table Presentation
Variable Dependent = Intention
Standardized Beta
Attitude
Subjective Norm
Perceived Control
0.607**
0.238**
0.105**
R
2
Adjusted R
2
F Value
D-W
0.693
0.688
141.13
1.501
*p< 0.05, **p< 0.01

Discriminant - Command

Discriminant
Analysis
Analysis Case Processing Summary
127 66.1
0 .0
0 .0
0 .0
65 33.9
65 33.9
192 100.0
Unweighted Cases
Valid
Missing or out-of-range
group codes
At least one missing
discriminating variable
Both missing or
out-of-range group codes
and at least one missing
discriminating variable
Unselected
Total
Excluded
Total
N Percent
Dividing the Sample into Estimation and
Split/Holdout Sample: Random Selection
Command:
TRANSFORM  RANDOM
NUMBER SEED
TRANSFORM  COMPUTE
Randz = UNIFORM(1) > 0.65 
will give  65% of respondent for
estimation and the remainder for
holdout sample
Question:
Which variables can discriminate high
and low intention to share?
Group Statistics
3.6481 .62349 104 104.000
3.5409 .62813 104 104.000
3.4038 .76981 104 104.000
4.3130 .57470 23 23.000
4.2609 .60995 23 23.000
3.6522 .78240 23 23.000
3.7685 .66448 127 127.000
3.6713 .68190 127 127.000
3.4488 .77494 127 127.000
Attitude
Norm
pbc
Attitude
Norm
pbc
Attitude
Norm
pbc
Level
Low
High
Total
Mean
Std.
DeviationUnweightedWeighted
Valid N (listwise)

Test for Model
Test Results
5.942
.939
6
9055.846
.465
Box's M
Approx.
df1
df2
Sig.
F
Tests null hypothesis of equal population covariance matrices.
Wilks' Lambda
.796 28.214 3 .000
Test of Function(s)
1
Wilks'
Lambda Chi-square df Sig.

Goodness of Model
Tests of Equality of Group Means
.850 22.007 1 125 .000
.833 24.998 1 125 .000
.985 1.949 1 125 .165
Attitude
Norm
pbc
Wilks'
Lambda F df1 df2 Sig.
Eigenvalues
.257
a
100.0 100.0 .452
Function
1
Eigenvalue
% of
VarianceCumulative %
Canonical
Correlation
First 1 canonical discriminant functions were used in the
analysis.
a.

Coefficients
Standardized Canonical
Discriminant Function Coefficients
.322
.741
.321
Attitude
Norm
pbc
1
Function
Canonical Discriminant Function Coefficients
.524
1.185
.415
-7.759
Attitude
Norm
pbc
(Constant)
1
Function
Unstandardized coefficients
Structure Matrix
.883
.828
.246
Norm
Attitude
pbc
1
Function
Pooled within-groups correlations between discriminating
variables and standardized canonical discriminant functions
Variables ordered by absolute size of correlation within
function.

Classification
NN
ZNZN
BA
ABBA

CU
Z



Z
A = centroid Group A
Z
B
= centroid Group B
N
A
& N
B
= Number in each group
Functions at Group Centroids
-.236
1.069
Level
Low
High
1
Function
Unstandardized canonical discriminant
functions evaluated at group means
Classification Function Coefficients
2.848 3.532
8.746 10.293
6.553 7.095
-32.031 -44.209
Attitude
Norm
pbc
(Constant)
Low High
Level
Fisher's linear discriminant functions

Predictive Validity
Classification Results
b,c,d
100 4 104
16 7 23
96.2 3.8 100.0
69.6 30.4 100.0
100 4 104
16 7 23
96.2 3.8 100.0
69.6 30.4 100.0
52 0 52
6 7 13
100.0 .0 100.0
46.2 53.8 100.0
Level
Low
High
Low
High
Low
High
Low
High
Low
High
Low
High
Count
%
Count
%
Count
%
Original
Cross-validated
a
Original
Cases Selected
Cases Not Selected
Low High
Predicted Group
Membership
Total
Cross validation is done only for those cases in the analysis. In cross validation, each
case is classified by the functions derived from all cases other than that case.
a.
84.3% of selected original grouped cases correctly classified.b.
90.8% of unselected original grouped cases correctly classified.c.
84.3% of selected cross-validated grouped cases correctly classified.d.

Benchmark for Comparison
How good is the Hit Ratio? Compute Hit Ratio for
split sample and compare it against
Maximum Chance Criterion: This is just the size of the largest
group. Minimum criterion to be met by the Hit Ratio
Proportional Chance Criterion: Should be used when group sizes
are unequal. If two groups this is given as follows:
Cpro = p2 + (1 - p)2 p = proportion in group
Press’s Q: Compares No. of correct classification (n) against Total
Sample (N) and Number of Groups (k)

Press Q  
2
with 1 degree of freedom. (3.84, 6.64)

1)-N(k
k)]*(n - [N
Q Press
2

Logistic Regression- Command

Logistic Regression- Command

Case Processing Summary
192 100.0
0 .0
192 100.0
0 .0
192 100.0
Unweighted Cases
a
Included in Analysis
Missing Cases
Total
Selected Cases
Unselected Cases
Total
N Percent
If weight is in effect, see classification table for the total
number of cases.
a.
Dependent Variable Encoding
0
1
Original Value
Low
High
Internal Value
Classification Table
a,b
0 84 .0
0 108 100.0
56.3
Observed
Low
High
Sharing Level
Overall Percentage
Step 0
Low High
Sharing Level Percentage
Correct
Predicted
Constant is included in the model.a.
The cut value is .500b.
Initial Output
This is the proportion of
respondents in the high
Sharing category
Correctly classifies all those
With high values but misses
All those with low values.
No missing cases

Variables in the Equation
.251 .145 2.984 1 .084 1.286ConstantStep 0
B S.E. Wald df Sig. Exp(B)
Variables not in the Equation
30.588 1 .000
38.624 1 .000
.120 1 .729
41.833 3 .000
Attitude
SN
PBC
Variables
Overall Statistics
Step
0
Score df Sig.
Output
The Wald statistics is like the
t-value. The constant by
itself does not significantly
Improve prediction
The constant is entered
first, the other variables
are not included

Block 1: Method = Enter
Omnibus Tests of Model Coefficients
48.073 3 .000
48.073 3 .000
48.073 3 .000
Step
Block
Model
Step 1
Chi-square df Sig.
Model Summary
215.088
a
.221 .297
Step
1
-2 Log
likelihood
Cox & Snell
R Square
Nagelkerke
R Square
Estimation terminated at iteration number 5 because
parameter estimates changed by less than .001.
a.
Hosmer and Lemeshow Test
71.722 8 .000
Step
1
Chi-square df Sig.
Output
A significant chi square indicates
That the predicted probabilities do
Not match the observed probabilities.
This is not what we usually want.
The Model accounts
for 29.7% of the variance

Contingency Table for Hosmer and Lemeshow Test
16 15.496 2 2.504 18
18 15.112 2 4.888 20
14 12.942 6 7.058 20
12 8.200 8 11.800 20
4 1.512 0 2.488 4
2 12.814 32 21.186 34
10 6.312 8 11.688 18
2 6.777 20 15.223 22
0 3.959 20 16.041 20
6 .875 10 15.125 16
1
2
3
4
5
6
7
8
9
10
Step
1
ObservedExpected
Sharing Level = Low
ObservedExpected
Sharing Level = High
Total
Contingency Table – Hosmer Lemeshow
This is a more detailed assessment
of the Hosmer Lemeshow Test.
need to look at how close or
how different are the observed
and expected values for each group

Classification Table
a
48 36 57.1
8 100 92.6
77.1
Observed
Low
High
Sharing Level
Overall Percentage
Step 1
Low High
Sharing Level Percentage
Correct
Predicted
The cut value is .500a.
Variables in the Equation
.717 .415 2.993 1 .084 2.049 .909 4.617
1.351 .443 9.302 1 .002 3.860 1.620 9.193
-.197 .243 .657 1 .418 .821 .510 1.323
-6.741 1.501 20.171 1 .000 .001
Attitude
SN
PBC
Constant
Step
1
a
B S.E. Wald df Sig. Exp(B) Lower Upper
95.0% C.I.for EXP(B)
Variable(s) entered on step 1: Attitude, SN, PBC.a.
Classification
The overall Predictive
Accuracy = 77.1%
An increase of 1 unit on the Attitude
measure increases the odds of
Sharing at a higher level by 2.049
times, controlling for SN and PBC
An increase of 1 unit on the SN
measure increases the odds of
Sharing at a higher level by 3.860
times, controlling for SN and PBC
Tags