Data Analytics KIT-601 ST-2 Sol Even 20-21.pdf

imrajaalii01 0 views 11 slides Aug 27, 2025
Slide 1
Slide 1 of 11
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11

About This Presentation

ljdbvidhfkidbvfcjo


Slide Content

AJAY KUMAR GARG ENGINEERING COLLEGE
Department of Information Technology

(Model Solutions)
Session: 20.22.- 024... (EVEN)
Exam Type : STI/ST2/ PUT/ UT

‘Subject Name: rte. Analytics. . Subject Code: … KT. 601.
Va DA, ser

Facaly Name Department
1 Drs Novenche. Homer TT

Prepared By

Dr... Norneha. Hume SR
ù Pe

(Faculty Name)

Reviewed By

als Nas (Signature)

(Dr. Anu Chaudhary)
Hob, IT

Section À

BRL List two divetions vin Sim ty mer oly, used
Fr loss fication
Mess SVM ds used where!

Tore is Pater Number of dimensions

> Where “thre is clue mega of Seperation
Vawcon classes

G-2'5

Name om

vo commercial fus
+ Einsam Porcessing,

used

ms Commercial poduds used der ram
Precisiny oe!
4 Kineás
2: Apache Kofka

G23)

Lo Wat la he assumption in Note Reyes Hs
Ros Sak ds mew peon In À D THe HRA

spression or Naive Cages
ms 3 Naive Boyes “thtovem Wom ascum|piion
fes y

indipandimet Sonn cxligloules

PIA). PCA)
Pal) = oe

BS Uy wet 1s Shane Des Y How ls dilo
on Aradihonak Dak Processing

Amato ream pressing deals Mi anios data
Strom quel oy Alert Seuss Sue
Sensory, SET comes | welo rare he
Wo dela ehesoming “We vote, A ES Sam
sers Vs mer Ser A rt of a som, WHISE
Arado dada Poesia sytem comas e ate
ak RA, dete WW mad rom Re ces,

ADD Ver Jen sees one wants do rene on

dota Sram
se» Soma arepa x amies va be os quen

below

4 Si Send Namens in dan tama

2 Sartre ox m del Sao

2 sima memory

y rg deso lore

s Hs, oka Skesonns,

Section &

Bob > Vote ext nées on Hime seien dake oral its
components
BAGS “Tre coves nage ds a util technique
Mar duos Wilh me señes dota TB Time —
soles deta means “tat data ia in aseñes
E paola fe pricde of mtemala, Deiter
4 one os moe voralofy collected Re
Sme pi rn Xime VA œil Crees - sectoral
Aa. Tine señes lola haie a mata
Jempssal cadet. Fre ur in sed er
edicion ovel Are esse. As Ke Name
Game sches fre metre? Sog, Y Wire a,
Porte on “me (Mora down ours Yrimut =) "sa
dara lo drive Madden ssh do vrake irme
dicision werden,

Components al Time soñes Date. An obsemeok
Kel AO

Are sexes un Be eltcompesenl ire ous am
nera Fr

A. Tre Het org term)
=: We seasonal (Expreso | alındar relate remet
3: Ta wregutar Qnsytematic, Se tem fluctatens)

BIT Var doe. a, And components of a Newall Nooo
hen used as a Sas her?

RE Newell voue VA à vente A
dota wedellr4 ook, Tr con be useel do
Medel mx Yeledionsrilp between ‘mputs

\
SA aps oF to inc ridden pattem th
CE

Major component, de Naval Net. ave.

Fi Loyer Hidden Layer Output Layo

MR AY, ~~ DT
Ww, —> Weights

49819 Eupen u use of fen Aspe wry any
—tocerniphe

MRS Aga Arie ts om afnoceh at Compu
bases on “equi So” ati thom TL
vsuel © Fine ov else (o, 0)? “Ke Tdea Was
Jer odtverdel Wy pe Lei Zodeh ed
seen 4 nn An l\Abola.

Ney —
Nolo

rem -

ma Le Jos MEL
Verses] +1 Log

Ro Loge carers Ai pipe ne m

la eprsenkiel in tens of Marrano Value,

Mendushp Value “ray vor bien odo t,

There are many eve finetens “hat

ba usec arn par the vequirement Qo
Jegie 1» used in medie cortrol.

yo
ALP cmc Vamos Intemáme HS >

ea SS EEE

dr Draw on plain

Momias combonerl 4 AR Samira
model
Ancora aber Guedes
Shara, Eneing
15,2 Fons
Wie,

Aya
O\\o lolo

OR Shramms

We cm view à shawn Pwcesor os a Kina

base Wworggement

4 do
amar no 4

Sn fry Number af einsame can >
em. Can stream cn Pwovice“alemeils
BA on soda Re need mat Pose Hu same dab.
nates or clos sa he ne between altmenta
one Stream ved wok ba pam Ma Gach test JR rate
CRUE & Stream lamenta Le net under te Cool
Gf Be Sem disimquisas tua Process Apo te
Doms. Trac man be opcived In oneal, Smeg,
Pine Assume ‘th TS mar hesola to omswer eses Jon
Are orchid stooge Mine Sa also a working Shore, , wo which

Summorder or pa cf Streama wey br poco oma which
on bar use toy N area.

bb dar da A ea 2h
Adon Mañas -
Hermula also“

db Suppe A rem Ya!
Eoimmare Wu Second oder nement Usha

Saga Algerie and vi ARA Slondlen

flots Steam > a,o¢,b,d ac da bd a,b
Sen Long (O IS

Doce a paypaars S Ames, b opprors Unes,

“BER A ola D Ames Sach, ta sel nement LT

Mu sans Sa WH AD 54

and CAD

Soppose we lem à waves X,,X, LX Allee
assume War ot random we pick te AAA
ord BA lesion do dufine “these 2 vorohls.
When we mesh posten 2, we find slme e, so we
SE Yyetement= © md Y ¿ele = |
Postion W Reds lb 50 we do nat orge Xy. Lkewise, mel
Hopp ob rien 5 er 6. Mr poto 7,1e su € agen
ao we er Xe = 2
AL position 8, we fina d, So we st Yyullement = oh
om Ya Bale =), Posen À 210 “Hold à & lo So the
do ma offic X K+ Poston N Rolas cl so we wd
Yorvalue + 2 ad Position 12 ads € so we set Xy value =3,
pr postion & we find aliment A amd Se Sale à
ona Yavalue 21. domos wan WE ove dla with fined
yaiern AiMalve = Yarualue = Xy Value = 2”
ye dsiwe on sshimele ef Seconk moment} m
A o a Vie)
Frat apr = Gsiuruÿs = 56 =

Section E

Esfimete Re run
o tam EN

> af Ml alimento pario
ESAS mori adem ra À
Qi sham da a Sa 1,6, 37

TR quen besa farctions coe

O A) = Bardon

D) ROZ UG Moa

Ans
SSS Guen Stun da 12,551, 63,7)

DI HG = Ben md Sr

HOD = au meda 13
AQ) = DIM moda 7
ROZ BrStimed a 16
RQ) = BAA! meda 28
AG) = BH mesa2= 4
RO = B3XGH\ Tred BD
ACH) = soria 10
Ripe Bat "med32=22_ |\o\\o

=14

Maximum taht Sung =4

Smoke value = de 6

b) oz WEG Wed BD

Roy roman lo |
AO) = amd E
Acs) = Sto Meds |
ea) = Armes
RO = 14 Gmodar-7
R(O— 6+ Gmail
Am = dr mel À

a)

y

14 6weda2=13 [omo 1 o

Meaoimumn JA Berdih = 3

Yo ol Afferent aliments — la. 2

AS. store DA vette med Mn Regresaten rectal “3

rear touttiverieste Regression Owais le a tedmique

ot sim à Sing regression model with -
more Mom One curteome wanahle. Thus when
Shoe Lo moe thom ont predicts vanablı IM
A muhyaniete Vegressten model We model 15
O wutivañode mulhpl agression.

TR mhwate Sar egresan wodel has the

tm

e
du = Da. Y a y + Cie
=

trie Un) ml KE ihm) whee

ue. ER la te Kath val value vostre Yr the
In observation |

ye ER ir te agression ‘atercalsh for oth westonse

bie ER Va Mm Joh praia yegression slope,
ster uch response

Yay ER in te AAA predictor for the ath —
dosexuatton

Cea MARIO E) Ve © multivariate Gaussion
y 5

ar Ver
Tags