DATAWAREHOUSING Pppt for data warehouin

vs7648465 8 views 20 slides Aug 27, 2024
Slide 1
Slide 1 of 20
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20

About This Presentation

Data warehousing ppt


Slide Content

What is Data Warehousing? • Centralized repository for integrated data\n• Used for reporting and data analysis

Why is Data Warehousing Used? • Improves decision-making\n• Supports business intelligence\n• Enables historical analysis

History of Data Warehousing • Emerged in the 1980s\n• Coined by Bill Inmon\n• Evolved with advancements in data storage and processing

Components of Data Warehousing • Data Sources\n• ETL Tools\n• Data Warehouse Database\n• BI Tools

Data Warehousing Architecture • Single-tier architecture\n• Two-tier architecture\n• Three-tier architecture

ETL Process • Extraction, Transformation, and Loading process\n• Critical for data quality

Data Warehousing vs. Databases • Databases: Operational data, transaction processing\n• Data Warehousing: Analytical data, decision support

Types of Data Warehouses • Enterprise Data Warehouse (EDW)\n• Operational Data Store (ODS)\n• Data Mart

OLAP in Data Warehousing • Online Analytical Processing\n• Multidimensional analysis\n• Cube structures

Data Marts • Subset of a data warehouse\n• Focused on a specific business area

Dimensional Modeling • Data modeling technique\n• Organizes data into facts and dimensions

Star Schema • Simple structure\n• Fact table connected to dimension tables\n• Commonly used in data warehousing

Snowflake Schema • More complex than Star Schema\n• Dimension tables are normalized

Fact and Dimension Tables • Fact tables: store quantitative data\n• Dimension tables: store descriptive data

Data Warehousing Tools • Tools: Informatica, Talend, AWS Redshift\n• BI tools: Tableau, Power BI

Data Warehousing Best Practices • Data quality management\n• Consistent data modeling\n• Scalable architecture

Challenges in Data Warehousing • Data integration\n• Scalability\n• Data security

Future Trends in Data Warehousing • Cloud-based data warehousing\n• Real-time data warehousing\n• AI and machine learning integration

Data Warehousing Case Studies • Success stories from various industries\n• Demonstrates the value of data warehousing

Conclusion • Recap of key points\n• Importance of data warehousing in modern businesses
Tags