Dcs lec03 - z-analysis of discrete time control systems

amrelsayedm 5,844 views 53 slides Dec 09, 2019
Slide 1
Slide 1 of 53
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53

About This Presentation

Digital Control
Faculty of Engineering
Helwan University


Slide Content

رَدـْقـِن ،،،املاننا قدصنْْقِنرَد
LECTURE (3)
Z-Analysis of Discrete Time
Control Systems
ASCO. Prof. Amr E. Mohamed

Agenda
Mathematicalrepresentationofimpulsesampling.
Theconvolutionintegralmethodforobtainingthez-transform.
Examples
Properties
InverseZ-Transform
LongDivision
PartialFraction
SolutionofDifferenceEquation
Mappingbetweens-planetoz-plane
2

Impulse Sampling
FictitiousSampler.
Theoutputofthesamplerisatrainofimpulses.
Let’sdefinethetrainofimpulses
??????
??????�=
??????=0

????????????????????????�−????????????
3

Impulse Sampling
Thesamplermaybeconsideredamodulator
??????

�=??????�??????
??????�=
??????=0

????????????????????????�−????????????
??????

�=??????0??????�+??????????????????�−??????+⋯+????????????????????????(�−????????????)+⋯
4

Impulse Sampling
TheLaplacetransformof??????

�
??????

�=??????0??????�+????????????�
−????????????
+⋯+??????????????????�
−??????????????????
+⋯
??????

�=
??????=0

??????????????????�
−??????????????????
Ifwedefine??????=�
????????????
⟹�=
1
??????
ln??????
??????

�
??????=
1
??????
ln??????
=????????????=
??????=0

????????????????????????
−??????
TheLaplacetransformofsampledsignal??????

�hasbeenshowntobethe
sameasz-transformofthesignal??????�if�
????????????
isdefinedasz.
5

Data Hold Circuits
Dataholdisaprocessofgeneratingacontinuous-timesignalℎ(�)from
adiscretetimesequence??????

�.
Aholdcircuitapproximatelyreproducesthesignalappliedtothe
sampler.
ℎ????????????+�=�
??????�
??????
+�
??????−1�
??????−1
+⋯+�
1�+�
0
Notethatthesignalℎ????????????mustequal??????????????????,hence
ℎ????????????+�=�
??????�
??????
+�
??????−1�
??????−1
+⋯+�
1�+??????????????????
Thesimplestdata-holdisobtainedwhen�=0[Zero-OrderHold(ZOH)]
ℎ????????????+�=??????????????????
When�=1[First-OrderHold(FOH)]
ℎ????????????+�=�
1�+??????????????????
6

Zero-Order Hold (ZOH)
ℎ????????????+�=?????????????????? ���0≤�≤??????
7

Zero-Order Hold (ZOH)
Theoutputℎ(�)

1�=??????0[1�−1(�−??????)]+????????????[1�−??????−1(�−2??????)]+⋯

1�=
??????=0

??????????????????[1�−????????????−1(�−(??????+1)??????)]
Since,ℒ1�−????????????=
??????
−??????????????????
??????
ThentheLaplacetransformoftheoutputℎ
1�is�
1�
�
1�=
??????=0

??????????????????
�
−??????????????????
−�
−(??????+1)????????????
�
=
1−�
−????????????
�

??????=0

??????????????????�
−??????????????????
8

Zero-Order Hold (ZOH)
Since,ℒℎ
1�=�
1�=ℒℎ
2�=�
2�
�
2�=
1−�
−????????????
�

??????=0

??????????????????�
−??????????????????
=
1−�
−????????????
�
??????

(�)=�
ℎ0�??????

(�)
ThenthetransferfunctionoftheZOHis
�
ℎ0�=
1−�
−????????????
�
Thus,therealsamplerandzero-orderholdcanbereplacedbya
mathematicallyequivalentcontinuoustimesystemthatconsistsofan
impulsesamplerandatransferfunction
1−??????
−????????????
??????
.
9

First Order Hold (FOH)
Theequationofthefirstorderholdisℎ????????????+�=�
1�+??????????????????���0≤�≤??????
Byapplyingtheconditionℎ(??????−1)??????=??????(??????−1)??????
Theconstant�
1canbedeterminedasfollows:
ℎ(??????−1)??????=−�
1??????+??????????????????=??????(??????−1)??????
�
1=
??????????????????−??????(??????−1)??????
??????
10

First Order Hold (FOH)
Hence,
ℎ(??????−1)??????=??????????????????+
??????????????????−??????(??????−1)??????
??????
Supposethattheinput??????�isunit-stepfunction
ℎ�=1+
�
??????
1�−
�−??????
??????
1�−??????−1(�−??????)
11

First Order Hold (FOH)
TheLaplacetransformofthelastequation
��=
1
�
+
1
??????�
2

1
??????�
2
�
−????????????

1
�
�
−????????????
=
1−�
−????????????
�
+
1−�
−????????????
??????�
2
��=1−�
−????????????
??????�+1
??????�
2
TheLaplacetransformoftheinput??????

�is
??????

�=
??????=0

1????????????�
−??????????????????
=
1
1−�
−????????????
12

First Order Hold (FOH)
Since,��=1−�
−????????????
????????????+1
????????????
2
=�
ℎ1�??????

�
Hence,thetransferfunctionoftheFOHis
�
ℎ1�=
��
??????

�
=1−�
−????????????2
??????�+1
??????�
2
??????
??????�??????=
�−??????
−????????????
??????
�
????????????+�
??????
13

Obtaining the z-Transform by the Convolution Integral Method
Calculating??????

�fromtheoriginal
signal??????�
Bysubstituting??????for??????
????????????
toobtain??????(??????)fromthesampledsignal??????

�
Forsimplepole
Formultiplepoleofordern
14

Example
Solution:
15

Example
Solution:
16

Reconstructing Original Signals from Sampled Signals
SamplingTheorem
Ifthesamplingfrequencyissufficientlyhighcomparedwiththehighest-
frequencycomponentinvolvedinthecontinuous-timesignal,theamplitude
characteristicsofthecontinuous-timesignalmaybepreservedinthe
envelopeofthesampledsignal.
Toreconstructtheoriginalsignalfromasampledsignal,thereisacertain
minimumfrequencythatthesamplingoperationmustsatisfy.
Weassumethat??????(�)doesnotcontainanyfrequencycomponentsabove??????
1
rad/sec.
17

Reconstructing Original Signals from Sampled Signals
SamplingTheorem
If??????
??????,defiedas2??????/??????isgreaterthan2??????
1,where??????
1isthehighest-
frequencycomponentpresentinthecontinuous-timesignal??????(�),thenthe
signal??????(�)canbereconstructedcompletelyfromthesampledsignal??????(�).
Thefrequencyspectrum:
18

Reconstructing Original Signals from Sampled Signals
19

Reconstructing Original Signals from Sampled Signals
IdealLow-passfilter
Theidealfilterattenuatesallcomplementarycomponentstozeroandwill
passonlytheprimarycomponent.
Ifthesamplingfrequencyislessthantwicethehighest-frequency
componentoftheoriginalcontinuous-timesignal,eventheidealfilter
cannotreconstructtheoriginalcontinuous-timesignal.
20

Reconstructing Original Signals from Sampled Signals
IdealLow-passfilterisNOTphysicallyrealizable
Fortheidealfilteranoutputisrequiredpriortotheapplicationoftheinput
tothefilter
21

Reconstructing Original Signals from Sampled Signals
FrequencyresponseoftheZero-OrderHold.
ThetransferfunctionoftheZOH
22

Reconstructing Original Signals from Sampled Signals
FrequencyresponsecharacteristicsoftheZero-OrderHold.
23

Reconstructing Original Signals from Sampled Signals
FrequencyresponsecharacteristicsoftheZero-OrderHold.
ThecomparisonoftheidealfilterandtheZOH.
ZOHisaLow-passfilter,althoughitsfunctionisnotquitegood.
TheaccuracyoftheZOHasanextrapolatordependsonthesampling
frequency.
24

Reconstructing Original Signals from Sampled Signals
Folding
Thephenomenonoftheoverlapinthefrequencyspectra.
Thefoldingfrequency(Nyquistfrequency):??????
??????
??????
??????=
1
2
??????
??????=
??????
??????
Inpractice,signalsincontrolsystemshavehigh-frequencycomponents,and
somefoldingeffectwillalmostalwaysexist.
25

Reconstructing Original Signals from Sampled Signals
Aliasing
Thephenomenonthatfrequencycomponentn??????
??????±??????
2showsupat
frequency??????
2whenthesignal??????(�)issampled.
Toavoidaliasing,wemusteitherchoosethesamplingfrequencyhigh
enoughoruseaprefilteraheadofthesamplertoreshapethefrequency
spectrumofthesignalbeforethesignalissampled.
26

The Pulse Transfer Function -Convolution Summation
27

The Pulse Transfer Function –Starred Laplace transform
28

The Pulse Transfer Function –Starred Laplace transform
29

The Pulse Transfer Function of Cascade Elements
30

The Pulse Transfer Function of Cascade Elements
31

The Pulse Transfer Function of The Closed Loop Systems
32

The Pulse Transfer Function of The Closed Loop Systems
33

Closed-Loop Pulse Transfer Function of a Digital Control System
34

Closed-Loop Pulse Transfer Function of a Digital Control System
35

Closed-Loop Pulse Transfer Function of a Digital PID Controller
36

Closed-Loop Pulse
Transfer Function
of a Digital PID
Controller
37

Closed-Loop Pulse Transfer Function of a Digital PID Controller
38

PID Controller
39

Obtaining Response Between Consecutive Sampling Instants
Thez-transformanalysiswillnotgiveinformationonthereponse
betweentwoconsecutivesamplinginstants.
Threemethodsforprovidingaresponsebetweenconsecutivesampling
instantsarecommonlyavailable:
1)Laplacetransformmethod
2)Modifiedz-Transformmethod
3)State-Spacemethod.
40

Laplace Transform Method
41

Realization of Digital Controllers and Digital Filters
Adigitalfilterisacomputationalalgorithmthatconvertsaninput
sequenceofnumbersintoanoutputsequenceinsuchawaythatthe
characteristicsofthesignalarechangedinsomeprescribedfashion.
Adigitalfilterprocessesadigitalsignalbypassingdesirablefrequency
componentsofthedigitalinputsignalandrejectingundesirableones.
Ingeneral,adigitalcontrollerisaformofdigitalfilter.
Ingeneral,“Realization”meansdeterminingthephysicallayoutforthe
appropriatecombinationofarithmeticandstorageoperation.
Realizationtechniquesare
Directrealization.
Standardrealization.
Seriesrealization.
Parallelrealization.
Laderrealization.
42

Direct realization.
Thegeneralformofthedigitalfilteris
Then
43

Standard Programming
Indirectprogramming,thenumeratorusesasetof�delayelements
andthedenominatorusesadifferentsetof�delayelements.Thusthe
totalnumberofdelayelementsusedindirectprogrammingis(�+�).
Thestandardprogrammingusesaminimumnumberofdelayelements
(�).
44

Standard Programming
45

Standard Programming
46

Note:
Inrealizingdigitalcontrollersordigitalfilters,itisimportanttohavea
goodlevelofaccuracy.Basically,threesourcesoferrorsaffectthe
accuracy:
1)Thequantizationerrorduetothequantizationoftheinputsignalintoa
finitenumberofdiscretelevels.Thequantizationnoisemaybeconsidered
whitenoise;thevarianceofthenoiseis??????
2
=??????
2
/12.
2)Theerrorduetotheaccumulationofround-offerrorsinthearithmetic
operationsinthedigitalsystem.
3)Theerrorduetoquantizationofthecoefficients�
??????and�
??????ofthepulse
transferfunction.Thiserrormaybecomelargeastheorderofthepulse
transferfunctionisincreased.
•Thatis,inahigher–orderdigitalfilterindirectstructure,smallerrorsinthe
coefficientscauselargeerrorsinthelocationsofthepolesandzerosofthe
filter.
47

Decomposition Techniques
Notethatthethirdtypeoferrorlistedmaybereducedby
mathematicallydecomposingahigher-orderpulsetransferfunctioninto
acombinationoflower-orderpulsetransferfunctions.
Fordecomposinghigher-orderpulsetransferfunctionsinordertoavoid
thecoefficientsensitivityproblem,thefollowingthreeapproachesare
commonlyused.
1)SeriesProgramming.
2)ParallelProgramming
3)LaderProgramming
48

Series Programming
The�(??????)maybedecomposedasfollows:
Thentheblockdiagramforthedigitalfilter�(??????)isaseriesconnection
ofpcomponentdigitalfiltersasshown.
49

Parallel Programming
The�(??????)isexpandedusingthepartial
fractionsasfollows:
Thentheblockdiagramforthedigital
filter�(??????)isaparallelconnectionof
pcomponentdigitalfiltersasshown.
50

LaderProgramming
The�(??????)isdecomposedintoacontinued-fractionsformasfollows:
TheG(z)maybewrittenasfollows:
51

LaderProgramming (Cont.)
Thentheblockdiagramforthedigitalfilter�(??????)isaLaderconnection
ofpcomponentdigitalfiltersasshown.
52

53
Tags