Third identity
This identity is related to cascade connection of a linear time invariant systemH(Z) and
a downsampler. Filtering withH(Z
M
) and downsampling byMis equal to the downsampling
byMand ltering withH(Z).
Figure 18: Third identity structures.
The third identity is demonstrated using a lter expanded with M = 4 which precedes
the downsampler as can be seen in structure 1 in gure 18. Another lter is designed to
implement structure 2, and nally the graphs in gure 19, show this identity, the Matlab
implementation is as follows:
n = 0 : 6 0 ; % Time index
x = cos (2pi0.05n ) ; % Generating the o r i g i n a l s i g n a l
h = f i r 1 ( 1 0 , 0 . 5 ) ; % Designing the f i l t e r t r a n s f e r function H( z )
hu = upsample (h , 4 ) ; % Transfer function H( z^M)
y1 = f i l t e r (hu ,1 , x ) ; % F i l t e r i n g
y = downsample (y1 , 4 ) ; % Downsampling
m = 0: length (y)1; % Time index
f i g u r e (1)
subplot (3 ,2 ,1) , stem (n , x ) , ylabel ( ' x [ n ] ' )
t i t l e ( ' Figure 18( a ) ')
subplot (3 ,2 ,3) , stem (n , y1 ) , ylabel ( ' y1 [ n ] ' )
subplot (3 ,2 ,5) , stem (m, y ) , ylabel ( ' y [m] ' )
xlabel ( ' Time index ' )
y2 = downsample (x , 4 ) ; % down sampling
y = f i l t e r (h ,1 , y2 ) ; % f i l t e r i n g
subplot (3 ,2 ,2) , stem (n , x , ' r ' ) , ylabel ( ' x [ n ] ' )
t i t l e ( ' Figure 18(b ) ')
subplot (3 ,2 ,4) , stem (m, y2 , ' r ' ) , ylabel ( ' y2 [m] ' )
subplot (3 ,2 ,6) , stem (m, y , ' r ' ) , ylabel ( ' y [m] ' )
xlabel ( ' Time index ' )
In gure 19 the left-hand side shows the signals for structure 1, and the right-hand side
presents the signals for structure 2. This results shown in g. 19 demonstrate the equivalence
of the cascade connections dened by the third identity.
8