11
Existing Literature
•Somepublicationsconsideredtoutilizechannelstateinformation(CSI)forVAE
input.However,acquiringCSIisquitecomplexandneedshighcostand
sophisticatedequipmentforitsextraction.
•Otherpublicationsproposedthesemi-supervisedVAEinindoorlocalizationusing
RSSI(Byaddedonemoreneuralnetworkasdiscriminator).
•Theotherresearchersapplythegenerativeadversarialnetworks(GAN)toaugment
RSSIvaluesandlocalizethetarget.GANismorereliablewiththevastdataset;
however,itcoststhetrainingtimesinceitisbasedonadversarialnetworkswhich
employstwoduelingneuralnetworks.
•OurresearchoffersmorestraightforwardsolutioninRSSIsynthesisby
implementingVAEtoenhancethefingerprintdatabase.
•K.M.ChenandR.Y.Chang,“Semi-SupervisedLearningwithGANsforDevice-FreeFingerprintingIndoorLocalization,”GLOBECOM2020-Proceedings,2020
•X.Chen,et.al,“Fidora:RobustWiFi-basedIndoorLocalizationviaUnsupervisedDomainAdaptation,”IEEEInternetofThingsJournal,pp.1–1,2022,
•W.Qian,et.al,“Supervisedandsemi-superviseddeepprobabilisticmodelsforindoorpositioningproblems,”Neurocomputing,vol.435,pp.228–238,May2021,
•W.Njima,et.al,“IndoorLocalizationUsingDataAugmentationviaSelectiveGenerativeAdversarialNetworks,”IEEEAccess,vol.9,no.Ml,pp.98337–98347,2021
•M.Nabati,et.al,“UsingSyntheticDatatoEnhancetheAccuracyofFingerprint-BasedLocalization:ADeepLearningApproach,”IEEESensorsLetters,vol.4,no.4,2020.