Definición y origen de los números complejos

juanalfonsogilapodaca 539 views 40 slides Dec 04, 2015
Slide 1
Slide 1 of 40
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40

About This Presentation

numeros complejos


Slide Content

Definición y origen de los números complejos.
Historia de los números complejos
La primera referencia conocida a raíces cuadradas de números
negativos proviene del trabajo de los matemáticos griegos, como
Herón de Alejandría en el siglo I antes de Cristo, como resultado de
una imposible sección de una pirámide. Los complejos se hicieron más
patentes en el Siglo XVI, cuando la búsqueda de fórmulas que dieran
las raíces exactas de los polinomios de grados 2 y 3 fueron
encontradas por matemáticos italianos como Tartaglia, Cardano.
Aunque sólo estaban interesados en las raíces reales de este tipo de
ecuaciones, se encontraban con la necesidad de lidiar con raíces de
números negativos. El término imaginario para estas cantidades fue
acuñado por Descartes en el Siglo XVII y está en desuso. La
existencia de números complejos no fue completamente aceptada
hasta la más abajo mencionada interpretación geométrica que fue
descrita por Wessel en 1799, redescubierta algunos años después y
popularizada por Gauss. La implementación más formal, con pares de
números reales fue dada en el Siglo XIX.
Definición de número complejo
Los números complejos z se pueden definir como pares ordenados
z = (x,
y)

de números reales x e y, con las operaciones de suma y producto que
especificaremos más adelante. Se suelen identificar los pares (x,
0) con los números reales x.

(Dar click para agrandar las imagenes)

1.2 Operaciones fundamentales con números
complejos.
Varias propiedades de la suma y del producto de números complejos
coinciden con las de los números reales. Recogeremos aquí las más
básicas y verificamos algunas de ellas.
Las leyes conmitativas
z1 + z2= z2 + z1, z1z2 =
z2z1

y las asociativas
(z1 + z2) + z3 = z1 + (z2 + z3), (z1z2)z3 =
z1(z2z3)

se siguen fácilmente de las definiciones de la suma y el producto de
números complejos, y del hecho de que los números reales las
satisfacen. Por ejemplo, si
z1 = (x1, y1) y z2 = (x2, y2),
entonces
z1 + z2 = (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2) = (x2 + x1, y2 + y1) = (x2, y2) +
(x1, y1) = z2 + z1
La verificación de las restantes, así como de la ley distributiva
z(z1 + z2) = zz1 +
zz2,

es similar.
De acuerdo con la ley conmutativa del producto, iy = yi; luego está
permitido escribir
z = x + iy o z = x + yi

Además, por las leyes asociativas, una suma z1 + z2 + z3 o un
producto z1z2z3 están bien definidos sin paréntesis, igual que ocurría con
los números reales.
La identidad aditiva 0 = (0, 0) y la idenidad multiplicativa 1 = (1, 0) de los
números reales se transfieren al sistema de los números complejos. O
sea,
z + 0 = z y z * 1 =
z

para todo número complejo z. Más aún, 0 y 1 son los únicos números
complejos con tales propiedades. Para establecer la unicidad de 0,
supongamos que (u, v) es una identidad aditiva, y escribamos
(x, y) + (u, v) = (x, y),
donde (x, y) es cualquier número complejo. Se deduce que
x + u = x e y + v = y;
o sea, u = 0 y v = 0. El número complejo 0 = (0, 0) es, por tanto, la única
identidad aditiva.
Cada número complejo z = (x, y) tiene asociado un inverso aditivo
-z = (-x, -
y)

que satisface la ecuación z + (-z) = 0. Además, hay un sólo inverso
aditivo para cada z, pues la ecuación (x, y) + (u, v) = (0,0) implica que u =
-x y v = -y.
Los inversos aditivos se usan para definir la resta:
z1 - z2 = z1 + (-z2).
Luego si z1 = (x1, y1) y z2 = (x2, y2), entonces
z1 - z2 = (x1 - x2, y1 - y2) = (x1 - x2) + i(y1 - y2).

Análogamente, para todo número complejo z = (x, y) no nulo, existe un
número complejo z
-1
tal que zz
-1
= 1. Este inverso multiplicativo es menos
obvio que el aditivo. Para hallarlo, buscamos números reales u,
v expresados en términos de x e y, tales que
(x, y)(u, v) = (1,0).
(Dar click para agrandar la imagen)

1.3 Potencias de "i", modulo o valor absoluto.
El valor absoluto, módulo o magnitud de un número complejo z viene
dado por la siguiente expresión:

Si pensamos en z como algún punto en el plano; podemos ver, por el
teorema de Pitágoras, que el valor absoluto de un número complejo
coincide con la distancia euclídea desde el origen del plano.
Si el complejo está escrito en forma exponencial z = r e

, entonces |z|
= r. Se puede expresar en forma polar como z = r (cosφ + isenφ), donde
cosφ + isenφ = e

es la conocida fórmula de Euler.
Podemos comprobar con facilidad estas cuatro importantes propiedades
del valor absoluto




para cualquier complejo z y w.
Por definición, la función distancia queda como sigue d(z, w) = |z - w| y
nos provee de un espacio métrico con los complejos gracias al que se
puede hablar de límites y continuidad. La suma, la resta, la multiplicación
y la división de complejos son operaciones continuas. Si no se dice lo
contrario, se asume que ésta es la métrica usada en los números
complejos.

(Dar click para agrandar las imagenes)


1.5 Teorema de De Moivre, potencias y extracción de
raíces de un número complejos
Potencias de números complejos
Las potencias enteras de un número complejo no nulo z = re

vienen dadas por
z = r
n
e
inθ
(n = 0, +1, -1, +2, -2 ...)
Como z
n+1
= zz
n
cuando n=1,2,..., esto se comprueba fácilmente para valores
positivos de n por inducción, para el producto de números complejos en forma
exponencial. La ecuación es válida también para n = 0 con el convenio de que z
0
=
1. Si n = -1, -2..., por otro lado, definimos z
n
en términos del inverso multiplicativo de
z escribiendo z
n
= (z
-1
)
m
, donde m = -n = 1, 2, ... Entonces, como la ecuación z
= r
n
e
inθ
es válida para potencias enteras positivas, se sigue de la forma exponencial
de z
-1
que
z
n
= [1/r e
i(-θ)
]
m
= (1/r)
m
e
im(-θ) =
r
n
e
inθ

Por tanto, la ecuación z = r
n
e
inθ
es válida para toda potencia entera.
Nótese que si r = 1, z = r
n
e
inθ
se convierte en
(e

)
n
= e
iθn
(n = 0, ±1, ±2 ...)
Cuando se expresa en la forma
(cos θ + i sen θ)
n
= cos nθ + i sen nθ
que se le conoce como la fórmula de De Moivre

(Dar click para agrandar la imagen)

2.1.- Definición de Matriz, Notación y Orden.

La matriz anterior se denota también por (ai j ), i =1, ..., m, j =1, ..., n, o simplemente por (ai j ).
Los términos horizontales son las filas de la matriz y los verticales son sus columnas. Una matriz con m filas y n columnas se
denomina matrizm por n, o matriz m ð n.

Las matrices se denotarán usualmente por letras mayúsculas, A, B, ..., y los elementos de las mismas por minúsculas, a, b, ...
Ejemplo:


donde sus filas son (1, -3, 4) y (0, 5, -2) y sus


CLASES DE MATRICES
Según el aspecto de las matrices, éstas pueden clasificarse en:
Matrices cuadradas
Una matriz cuadrada es la que tiene el mismo número de filas que de columnas. Se dice que una matriz cuadrada n ð n es de
orden n y se denomina matriz n-cuadrada.
Ejemplo: Sean las matrices


Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.
Matriz identidad
Sea A = (ai j ) una matriz n-cuadrada. La diagonal (o diagonal principal) de A consiste en los elementos a11, a22, ..., ann. La
traza de A, escrito trA, es la suma de los elementos diagonales.
La matriz n-cuadrada con unos en la diagonal principal y ceros en cualquier otra posición, denotada por I, se conoce como
matriz identidad (o unidad). Para cualquier matriz A,
A· I = I ·A = A.
Matrices triangulares
Una matriz cuadrada A = (ai j ) es una matriz triangular superior o simplemente una matriz triangular, si todas las entradas
bajo la diagonal principal son iguales a cero. Así pues, las matrices

son matrices triangulares superiores de órdenes 2, 3 y 4.
Matrices diagonales
Una matriz cuadrada es diagonal, si todas sus entradas no diagonales son cero o nulas. Se denota por D = diag (d11, d22,
..., dnn ). Por ejemplo,


son matrices diagonales que pueden representarse, respectivamente, por
diag(3,-1,7) diag(4,-3) y diag(2,6,0,-1).
Traspuesta de una matriz
La traspuesta de una matriz A consiste en intercambiar las filas por las columnas y se denota por AT.
Así, la traspuesta de



En otras palabras, si A = (ai j ) es una matriz m ð n, entonces AT =
es la matriz n ð m. La trasposición de una matriz cumple las siguientes propiedades:
1. (A + B)T = AT + BT.
2. (AT)T = A.

3. (kA)T = kAT (si k es un escalar).
4. (AB)T = BTAT.
Matrices simétricas
Se dice que una matriz real es simétrica, si AT = A; y que es antisimétrica,
si AT = -A.
Ejemplo:
Consideremos las siguientes matrices:



Podemos observar que los elementos simétricos de A son iguales, o que AT = A. Siendo así, A es simétrica.
Para B los elementos simétricos son opuestos entre sí, de este modo B es antisimétrica.
A simple vista, C no es cuadrada; en consecuencia, no es ni simétrica ni antisimétrica.
Matrices ortogonales
Se dice que una matriz real A es ortogonal, si AAT = AT A = I. Se observa que una matriz ortogonal A es necesariamente
cuadrada e invertible, con inversa A-1 = AT.
Consideremos una matriz 3 ð 3 arbitraria:


Si A es ortogonal, entonces:

Matrices normales
Una matriz es normal si conmuta con su traspuesta, esto es, si AAT = ATA. Obviamente, si A es simétrica, antisimétrica u
ortogonal, es necesariamente normal.
Ejemplo:






Puesto que AAT = ATA, la matriz es normal.







2.2.- Operaciones con Matrices.

Suma y resta de matrices
Para poder sumar o restar matrices, éstas deben tener el mismo número de filas y de columnas. Es decir, si una matriz es de
orden 3 ð 2 y otra de 3 ð 3, no se pueden sumar ni restar. Esto es así ya que, tanto para la suma como para la resta, se
suman o se restan los términos que ocupan el mismo lugar en las matrices.

Ejemplo:








Para sumar o restar más de dos matrices se procede igual. No necesariamente para poder sumar o restar matrices, éstas
tienen que ser cuadradas.
Ejemplo:

2.3.- Clasificación de las Matrices.
Una matriz cuadrada tiene un número de filas p igual a su número de columnas q.
Son matrices de orden, p x p ó p2.
Las matrices:
A = 2 0 B = 0 2 3
-3 1 -1 0 2
0 0 0

son de orden 2 x 2 y 3 x 3 respectivamente.
Los elementos a11, a22, a33, ... ann de una matriz cuadrada constituyen su diagonal principal.
La diagonal principal será:
a11 ... ... ...
A = ... a22 ... ...
... ... a33 ...
... ... ... ann
una matriz cuadrada tal que:
a11 = a22 = a33 = .... = ann = 1 y todos los demás elementos son cero, es una matriz unidad.
La representaremos por I o sea:
IA = 1 0
 1
es una matriz de orden 2 x 2.
Una matriz diagonal es aquella en que los elementos que no están en la diagonal principal son ceros.
Esta es un matriz diagonal:
2 0 0 0
A = 0 3 0 0
0 0 -2 0
0 0 0 4
Una matriz cuyos elementos por encima o por debajo de la diagonal principal son todos ceros es matriz triangular. Si todos
los ceros están por encima de la diagonal principal entonces es una matriz inferior y si todos los ceros están por debajo de la
diagonal principal es una matriz superior.
Ejemplo:
A = 3 0 0 es una matriz inferior.
1 2 0
-1 0 4
B = 4 1 -2

0 1 5 es una matriz superior.
0 0 3
Esquema de filas, columnas y diagonal principal.
1 0 4 7 filas
A = 0 2 5 8
0 3 6 9
1 2 1 0 diagonal principal
columnas
Una matriz nula tiene todos sus elementos nulos.
Ejemplo:
0 0 0
A = 0 0 0
0 0 0
Una matriz cuadrada es simétrica si: aij = aji.
Es decir si los elementos situados a igual distancia de su diagonal principal son iguales.
A = 1 -3 5
-3 2 0
5 0 1
es simétrica porque: a12 = a21 = -3, a13 = a31 = 5, a23 = a32 = 0.
Una matriz es asimétrica si: aij = aji.
Observa si 1 = j, aii = -aii y el único número que cumple con esta igualdad es el cero por lo que es una matriz asimétrica la
diagonal principal esta formada por elementos nulos.
En una matriz asimétrica los elementos situados a igual distancia de la diagonal principal son iguales en valor absoluto y de
signos contrarios.
B = 0 2 -2 5
-2 0 3 6
2 -3 0 -1

-5 6 1 0
es una matriz asimétrica
Matriz escalar
Si tenemos una matriz diagonal cuyos elementos que están en la diagonal principal son todos iguales entonces tenemos una
matriz escalar.
A = 3 0 0
0 3 0
0 0 3
Matriz identidad
Es toda matriz escalar en la que todos los elementos de la diagonal principal son iguales a la unidad.
Esta matriz se representa por 1n.
12 = 1 0
 1
igualdad de matrices si y solo si tienen el mismo orden y sus elementos son iguales.
Ejemplo:
A = a b B = x y
c d z w
si en estas matrices a = x, b = y, c = z y d = w, entonces las matrices A y B son iguales.
Matriz transpuesta
Si tenemos una matriz (A) cualquiera de orden m x n entonces su transpuesta es otra matriz (A) de orden n x m donde se
intercambian las filas y las columnas de la matriz (A).
Ejemplo:
Si
A = 4 -1 3
0 5 -2
entonces su traspuesta será:
At = 4 0

-1 5
(Dar click para agrandar las imagenes)

2.4.- Transformaciones Elementales por Renglón
Escalonamiento. Rango.
(Dar click para agrandar la imagen)

2.5.- Cálculo de la Inversa de una Matriz.
Cálculo de la matriz inversa usando determinantes
Dada una matriz cuadrada A, se llama matriz adjunta de A, y se representa por Adj(A), a la matriz de los adjuntos, Adj(A) =
(Aij).


Si tenemos una matriz tal que det (A) ¹ 0, se verifica:


Esto es fácil probarlo puesto que sabemos que la suma de los productos de los elementos de una fila por sus adjuntos es el
valor del determinante, y que la suma de los productos de los elementos de una fila por los adjuntos de otra fila diferente es 0
(esto sería el desarrollo de un determinante que tiene dos filas iguales por los adjuntos de una de ellas).

Método de Gauss-Jordan para el cálculo de la matriz inversa
El método de Gauss - Jordan para calcular la matriz inversa de una dada se basa en una triangularización superior y luego
otra inferior de la matriz a la cual se le quiere calcular la inversa.

Para aplicar el método se necesita una matriz cuadrada de rango máximo. Sabemos que no siempre una matriz tiene inversa,
por lo cual comprobaremos que la matriz tenga rango máximo al aplicar el método de Gauss para realizar la triangularización
superior. Si al aplicar el método de Gauss (triangularización inferior) se obtiene una línea de ceros, la matriz no tiene inversa.


(Dar click para agrandar la imagen)

2.6.- Definición de Determinante de una Matriz.
Para una matriz cuadrada A[n,n], el determinante de A, abreviado det (A), es un escalar definido
como la suma de n! términos involucrando el producto de n elementos de la matriz, cada uno
proveniente exactamente de una fila y columna diferente. Además, cada término de la suma está
multiplicado por -1 ó +1 dependiendo del número de permutaciones del or den de las columnas que
contenga.
2.7.- Propiedad de los Determinantes.
Propiedades
det(AB) = det(A)det(B).
det(A
T
) = det(A).
det(A
H
) = conjugado(det(A)), en donde A
H
es la transpuesta conjugada (Hermitian) de A.
det(cA) = c
n
det(A).
Intercambiando cualquier par de columnas (filas) de una matriz se multiplica su determinante por -
1.

Multiplicando cualquier columna (fila) de una matriz por c multiplica su determinante por c.
Agregando cualquier múltiplo de una columna (fila) de una matriz a otra no altera su determinante.
det(A) <> 0 si y sólo si A es no singular.

Determinante de Matrices Simples
det([a,b;c,d]) = ad-bc.
det([a,b,c;d,e,f;g,h,i]) = aei+bfg+cdh-ceg-bdi-afh.
El determinante de una matriz diagonal (pura, superior o inferior) es el producto de los elementos
de su diagonal.

Determinante de Bloques de Matrices
B[m,n], C[m,n]: det([A,B;C
T
,D]) = det([D,C
T
;B,A])= det(A) det(D-C
T
A
-1
B).
B[m,n], C[m,n]: det([I,B;C
T
,I]) = det(I-B
T
C) = det(I-BC
T
) = det(I-C
T
B)= det(I-CB
T
).
A[m,m], D[n,n]: det([A,B;0,D]) = det(A) det(D).
A[n,n], B[n,n], C[n,n], D[n,n]; CD=DC: det([A,B;C,D]) = det(AD-BC).
A[n,n], B[n,n], C[n,n], D[n,n]; AC=CA: det([A,B;C,D]) = det(AD-CB).
A[n,n], B[n,n], C[n,n], D[n,n]; AB=BA: det([A,B;C,D]) = det(DA-CB).
A[n,n], B[n,n], C[n,n], D[n,n]; BD=DB: det([A,B;C,D]) = det(DA-BC).

2.8.- Inversa de una Matriz Cuadrada a Través de la Adjunta.
Definición: Una matriz cuadrada se llama matriz identidad si todos los componentes de su
diagonal principal son iguales a uno y todos los demás componentes que no están en la
diagonal principal son iguales a cero. La matriz identidad se representa con la letra I (la letra i
mayúscula).

Definición: Sea A una matriz cuadrada n x n. Entonces una matriz B es la inversa de A si
satisface A ∙ B = I y B ∙ A = I, donde I es la matriz identidad de orden n x n.

Ejemplo para discusión:


1. La inversa de A se representa por A
-1
. Así que A ∙ A
-1
= A
-1
∙ A = I.
2. No toda matriz cuadrada tiene una inversa.
3. Si A tiene inversa, entonces decimos que A es invertible.

Teoremas:

1. Sea A una matriz cuadrada n x n, entonces AI = IA = A.
2. Si A es una matriz invertible, entonces A
-1
es invertible y (A
-1
)
-1
= A.
3. Si una matriz cuadrada A es invertible, entonces la inversa es única.
4. Sean A y B matrices de orden n x n invertibles. entonces AB es invertible y (AB)
-1
= B
-
1
A
-1
.

Para hallar la inversa de una matriz cuadrada comenzamos con la matriz A/I, donde I representa
la matriz identidad del mismo orden que la matriz A. Efectuamos operaciones elementales con
las filas de A/I hasta que la matriz A se transforme en la matriz identidad I. Luego la matriz que
contiene los componentes a la derecha de la línea vertical es la inversa de A, esto es, A
-1
.

Ejemplo (para discusión): Halla A
-1
si existe para cada una de las siguientes matrices:


(Dar click para agrandar la imagen)

2.9.- Aplicacion de Matrices y Determinantes.
Matrices cuadradas
Una matriz cuadrada es la que tiene el mismo número de filas que de columnas. Se dice que una matriz cuadrada n ð n es de
orden n y se denomina matriz n-cuadrada.

Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.
Matriz identidad
Sea A = (ai j ) una matriz n-cuadrada. La diagonal (o diagonal principal) de A consiste en los elementos a11, a22, ..., ann. La
traza de A, escrito trA, es la suma de los elementos diagonales.
La matriz n-cuadrada con unos en la diagonal principal y ceros en cualquier otra posición, denotada por I, se conoce como
matriz identidad (o unidad). Para cualquier matriz A,
A· I = I ·A = A.

Matrices triangulares
Una matriz cuadrada A = (ai j ) es una matriz triangular superior o simplemente una matriz triangular, si todas las entradas
bajo la diagonal principal son iguales a cero. Así pues, las matrices

son matrices triangulares superiores de órdenes 2, 3 y 4.
Matrices diagonales
Una matriz cuadrada es diagonal, si todas sus entradas no diagonales son cero o nulas. Se denota por D = diag (d11, d22,
..., dnn ). Por ejemplo,

son matrices diagonales que pueden representarse, respectivamente, por
diag(3,-1,7) diag(4,-3) y diag(2,6,0,-1).
Traspuesta de una matriz
La traspuesta de una matriz A consiste en intercambiar las filas por las columnas y se denota por AT.
Así, la traspuesta de

En otras palabras, si A = (ai j ) es una matriz m ð n, entonces AT =
es la matriz n ð m. La trasposición de una matriz cumple las siguientes propiedades:
1. (A + B)T = AT + BT.
2. (AT)T = A.

3. (kA)T = kAT (si k es un escalar).
4. (AB)T = BTAT.
Matrices simétricas
Se dice que una matriz real es simétrica, si AT = A; y que es antisimétrica,
si AT = -A.
Ejemplo:
Consideremos las siguientes matrices:

Podemos observar que los elementos simétricos de A son iguales, o que AT = A. Siendo así, A es simétrica.
Para B los elementos simétricos son opuestos entre sí, de este modo B es antisimétrica.
A simple vista, C no es cuadrada; en consecuencia, no es ni simétrica ni antisimétrica.
Matrices ortogonales
Se dice que una matriz real A es ortogonal, si AAT = AT A = I. Se observa que una matriz ortogonal A es necesariamente
cuadrada e invertible, con inversa A-1 = AT.
Consideremos una matriz 3 ð 3 arbitraria:

Si A es ortogonal, entonces:

https://sites.google.com/site/tecalgebralineal/unidad-1-numeros-complejos
https://sites.google.com/site/tecalgebralineal/unidad-2---matrices-y-determinantes

3.1 Definición de sistemas de ecuaciones lineales.
En matemáticas y álgebra lineal, un sistema de ecuaciones lineales, también conocido como sistema lineal de
ecuaciones o simplemente sistema lineal, es un conjunto de ecuaciones lineales (es decir, un sistema de ecuaciones
en donde cada ecuación es de primer grado), definidas sobre un cuerpo o un anillo conmutativo. Un ejemplo de sistema
lineal de ecuaciones sería el siguiente:

El problema consiste en encontrar los valores desconocidos de las variables x1, x2 y x3 que satisfacen las tres
ecuaciones.

El problema de los sistemas lineales de ecuaciones es uno de los más antiguos de la matemática y tiene una infinidad
de aplicaciones, como en procesamiento digital de señales, análisis estructural, estimación, predicción y más
generalmente en programación lineal así como en la aproximación de problemas no lineales de análisis numérico.

En general, un sistema con m ecuaciones lineales y n incógnitas puede ser escrito en forma normal como:



Donde son las incógnitas y los números son los coeficientes del sistema sobre el
cuerpo . Es posible reescribir el sistema separando con coeficientes con notación matricial:


Si representamos cada matriz con una única letra obtenemos:

Donde A es una matriz m por n, x es un vector columna de longitud n y b es otro vector columna de longitud m. El
sistema de eliminación de Gauss-Jordan se aplica a este tipo de sistemas, sea cual sea el cuerpo del que provengan
los coeficientes.
Tags