Denavit hartenberg convention

nguyendattdh 22,950 views 17 slides Jan 27, 2015
Slide 1
Slide 1 of 17
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17

About This Presentation

No description available for this slideshow.


Slide Content

Denavit-Hartenberg Convention

Denavit-Hartenberg Convention
•Number the joints from 1 to n starting with the base and ending with
the end-effector.
•Establish the base coordinate system. Establish a right-handed
orthonormal coordinate system at the supporting base
with axis lying along the axis of motion of joint 1.
•Establish joint axis. Align the Z
i
with the axis of motion (rotary or
sliding) of joint i+1.
•Establish the origin of the ith coordinate system. Locate the origin
of the ith coordinate at the intersection of the Z
i
& Z
i-1
or at the
intersection of common normal between the Z
i
& Z
i-1
axes and the Z
i

axis.
•Establish X
i
axis. Establish or along the
common normal between the Z
i-1
& Z
i
axes when they are parallel.
•Establish Y
i
axis. Assign to complete the
right-handed coordinate system.
•Find the link and joint parameters
),,(
000
ZYX
iiiii
ZZZZX ´´±=
-- 11
/)(
iiiii
XZXZY ´´+= /)(
0Z

Example I
• 3 Revolute Joints
a
0
a
1
Z
0
X
0
Y
0
Z
3
X
2
Y
1
X
1
Y
2
d
2
Z
1
X
3
3O
2
O
1
O
0
O
Z
2
Joint 1
Joint 2
Joint 3
Link 1 Link 2

Link Coordinate Frames
•Assign Link Coordinate Frames:
–To describe the geometry of robot motion, we assign a Cartesian
coordinate frame (O
i
, X
i
,Y
i
,Z
i
) to each link, as follows:
•establish a right-handed orthonormal coordinate frame O
0
at
the supporting base with Z
0
lying along joint 1 motion axis.
•the Z
i
axis is directed along the axis of motion of joint (i + 1),
that is, link (i + 1) rotates about or translates along Z
i
;
Link 1 Link 2
a
0
a
1
Z
0
X
0
Y
0
Z
3
X
2
Y
1
X
1
Y
2
d
2
Z
1
X
3
3
O
2
O
1
O
0
O
Z
2
Joint 1
Joint 2
Joint 3

Link Coordinate Frames
–Locate the origin of the ith coordinate at the intersection
of the Z
i
& Z
i-1
or at the intersection of common normal
between the Z
i
& Z
i-1
axes and the Z
i
axis.
–the X
i
axis lies along the common normal from the Z
i-1

axis to the Z
i
axis , (if Z
i-1
is parallel
to Z
i
, then X
i
is specified arbitrarily, subject only to X
i

being perpendicular to Z
i
);
iiiii
ZZZZX ´´±=
-- 11
/)(
a
0
a
1
Z
0
X
0
Y
0
Z
3
X
2
Y
1
X
1
Y
2
d
2
Z
1
X
3
3
O
2
O
1
O
0
O
Z
2
Joint 1
Joint 2
Joint 3

Link Coordinate Frames
–Assign to complete the right-
handed coordinate system.
•The hand coordinate frame is specified by the geometry
of the end-effector. Normally, establish Z
n
along the
direction of Z
n-1
axis and pointing away from the robot;
establish X
n
such that it is normal to both Z
n-1
and Z
n
axes.
Assign Y
n
to complete the right-handed coordinate
system.
iiiii XZXZY ´´+= /)(
nO
a
0
a
1
Z
0
X
0
Y
0
Z
3
X
2
Y
1
X
1
Y
2
d
2
Z
1
X
3
3
O
2
O
1
O
0
O
Z
2
Joint 1
Joint 2
Joint 3

Link and Joint Parameters
•Joint angle : the angle of rotation from the X
i-1
axis to the
X
i
axis about the Z
i-1
axis. It is the joint variable if joint i is
rotary.
•Joint distance : the distance from the origin of the (i-1)
coordinate system to the intersection of the Z
i-1
axis and
the X
i
axis along the Z
i-1
axis. It is the joint variable if joint i
is prismatic.
•Link length : the distance from the intersection of the Z
i-1

axis and the X
i
axis to the origin of the ith coordinate
system along the X
i
axis.
•Link twist angle : the angle of rotation from the Z
i-1
axis to
the Z
i axis about the X
i axis.
i
q
i
d
i
a
i
a

Example I
Joint i ai ai di qi
1 0 a0 0 q0
2 -90 a1 0 q1
3 0 0 d2 q2

D-H Link Parameter Table
: rotation angle from X
i-1
to X
i
about Z
i-1
i
q
: distance from origin of (i-1) coordinate to intersection of Z
i-1
& X
i
along Z
i-1

: distance from intersection of Z
i-1
& X
i

to origin of i coordinate along X
i

i
d
: rotation angle from Z
i-1
to Z
i
about X
i

i
a
ia
a
0
a
1
Z
0
X
0
Y
0
Z
3
X
2
Y
1
X
1
Y
2
d
2
Z
1
X
3
3O
2
O
1
O
0
O
Z
2
Joint 1
Joint 2
Joint 3

Example II: PUMA 260
iiiii ZZZZX ´´±=
-- 11 /)(
iiiii XZXZY ´´+= /)(
1q
2
q
3
q
4q
5
q
6
q
0Z
1Z
2Z
3Z
4Z
5Z
1O
2O
3O
5O
4O
6O
1X
1Y
2X
2Y
3X
3Y
4X
4Y
5X
5
Y
6X
6
Y
6
Z
1.Number the joints
2.Establish base frame
3.Establish joint axis Zi
4.Locate origin, (intersect.
of Zi & Zi-1) OR (intersect
of common normal & Zi )
5.Establish Xi,Yi
PUMA 260
t

Link Parameters
1q
2
q
3
q
4q
5
q
6
q
0Z
1Z
2Z
3Z
4Z
5Z
1O
2O
3O
5O
4O
6O
1X
1Y
2X
2Y
3X
3Y
4X
4Y
5X
5
Y
6X
6
Y
6
Z
: angle from Z
i-1
to Z
i
about X
i

: distance from intersection
of Z
i-1
& X
i
to Oi along X
i

Joint distance : distance from Oi-1 to intersection of Z
i-1 & X
i along Z
i-1
: angle from X
i-1
to X
i
about Z
i-1

i
q
ia
i
a
i
d
t006
00905
80-904
0
0903
802
130-901
J
i
q
1
q
4
q
2
q
3
q
6
q
5
q
i
a
i
a
i
d
-l

Transformation between i-1 and i
•Four successive elementary transformations
are required to relate the i-th coordinate frame
to the (i-1)-th coordinate frame:
–Rotate about the Z
i-1
axis an angle of q
i
to align the
X
i-1
axis with the X
i
axis.
–Translate along the Z
i-1
axis a distance of d
i
, to bring
X
i-1
and X
i
axes into coincidence.
–Translate along the X
i
axis a distance of a
i
to bring
the two origins O
i-1
and O
i
as well as the X axis into
coincidence.
–Rotate about the X
i
axis an angle of α
i
( in the right-
handed sense), to bring the two coordinates into
coincidence.

Transformation between i-1 and i
•D-H transformation matrix for adjacent coordinate
frames, i and i-1.
–The position and orientation of the i-th frame coordinate
can be expressed in the (i-1)th frame by the following
homogeneous transformation matrix:
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
-
-
=
---
1000
0
),(),(),(),(
111
iii
iiiiiii
iiiiiii
iiiiiiii
i
i
dCS
SaCSCCS
CaSSSCC
xRaxTzRdzTT
aa
qqaqaq
qqaqaq
aq
Source coordinate
Reference
Coordinate

Kinematic Equations
•Forward Kinematics
–Given joint variables
–End-effector position & orientation
•Homogeneous matrix
–specifies the location of the ith coordinate frame w.r.t.
the base coordinate system
–chain product of successive coordinate transformation
matrices of
ú
û
ù
ê
ë
é

û
ù
ê
ë
é
=
=
-
100010
000
1
2
1
1
00
nnn
n
n
n
PasnPR
TTTT 
),,(
21 n
qqqq =
),,,,,( yqfzyxY=
i
iT
1-
n
T
0
Orientation
matrix
Position
vector

Kinematics Equations
•Other representations
–reference from, tool frame
–Yaw-Pitch-Roll representation for orientation
tool
n
n
ref
tool
ref
HTBT
0
0
=
yqf ,,, xyz
RRRT=
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é -
=
1000
0100
00
00
ff
ff
CS
SC
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
-
1000
00
0010
00
qq
qq
CS
SC
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
-
1000
00
00
0001
yy
yy
CS
SC

Solving forward kinematics
•Forward kinematics
ú
ú
ú
ú
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ê
ê
ê
ê
ë
é
Þ
ú
ú
ú
ú
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ê
ê
ê
ê
ë
é
j
q
f
q
q
q
q
q
q
z
y
x
p
p
p
6
5
4
3
2
1
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
=
1000
zzzz
yyyy
xxxx
pasn
pasn
pasn
T
• Transformation Matrix

Solving forward kinematics
•Yaw-Pitch-Roll representation for orientation
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
-
-+
+-
=
1000
0
z
y
x
n
pCCSCS
pSCCSSCCSSSCS
pSSCSCCSSSCCC
T
yqyqq
yfyqfyfyqfqf
yfyqfyfyqfJf
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ë
é
=
1000
0
zzzz
yyyy
xxxx
n
pasn
pasn
pasn
T
)(sin
1
zn-=
-
q
)
cos
(cos
1
q
y
za
-
=
)
cos
(cos
1
q
f
x
n
-
=
Problem?Solution is inconsistent and ill-
conditioned!!

atan2(y,x)
x
y
ï
ï
î
ï
ï
í
ì
-+££-
---££-
+-££
++££
==
yandxfor
yandxfor
yandxfor
yandxfor
xya




090
90180
18090
900
),(2tan
q
q
q
q
q
Tags