dental instruments

31,749 views 111 slides Oct 31, 2015
Slide 1
Slide 1 of 111
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109
Slide 110
110
Slide 111
111

About This Presentation

hand dental instruments


Slide Content

Dental Instruments *HAND* Instruments Type

Contents Introduction : Definition & History Classification : Cutting instruments Non cutting Cutting instruments : Materials Hardening and Tempering Heat treatments Design Shank Angles Nomenclature Formula Bevels Cutting instruments applications: Excavators Chisels Sharpening : Stationary sharpening Mechanical sharpening Instruments grasp : Modified pen . Inverted pen Palm and thumb Modified palm and thump Cleaning and sterilization Non cutting instruments : Amalgam condenser Mouth mirror Others

Introduction Definition : It’s hand –powered dental instruments . History : The early hand – operated instruments characterized by : 1- Large , heavy handles and inferior metal alloys in the blades . 2- cumbersome , difficult to use , and ineffective in many situations .

* There was no uniformity of manufacture or nomenclature , Many dentists made their own hand instruments in an effort to find a suitable instruments for a specific need . * Effective sterilization was a problem. Designs Of Some Early Hand Instruments

* G .V . Black  Is credited with the first acceptable nomenclature and classification of hand instruments . * His classification system enable both dentists and manufactures to communicate more clearly and effectively in regard to instruments design and function G.V.Black

Classification HAND INSTRUMENT Cutting Non cutting Excavators Chisels Others Amalgam condenser Mirrors Explorers, Probes Others Ordinary Straight Files hatchets Hoes Curved Scalers Angle bin- carvers Formers angle Spoons Enamel Hatchet Gingival margin trimmers

A. Cutting Instruments , * MATERIAL* Carbon Steel Stainless Steel Is harder than stainless steel . Remains bright under most conditions . When Unprotected , it will corrode . Loses a keen edge during use much more quickly than does carbon steel Hand cutting instruments are manufactured from two main materials

* MATERIAL * Tungsten carbide inserts or blades to provide more durable cutting edges (brittle). They may be soldered to steel handles . Some instruments are made with carbide to provide more durable cutting edges .

*MATERIAL* Other alloys of nickel , cobalt , or chromium are used in the manufacture of hand instruments Stainless steel Carbon steel

*MATERIALS* Hardening & Tempering Heat Treatments : To gain maximal benefits from carbon steel or stainless steel , the manufacture must submit them to two heat treatments : Heat treatment Furnace 

* MATERiaLS * The hardening heat treatment hardens the alloy , but it also makes it brittle , especially when the carbon content is high . Heat treatment relieves strains and increases toughness , the tempering . Heating or flaming of hand instruments during dental use can alter the original properties of the alloy and render it unserviceable .

Design Most hand instruments composed of three parts : a- Blade or nib b- Shank c- Handle

a- Blade This is the working part of the instrument. Begins at the point which terminates the shank. It is connected to the handle by the shank. Each blade has a cutting edge which is the working part of the instrument. It is usually in the form of a bevel (acute angle) that cuts into the tooth structure. On non cutting instruments e.g. condensers the part corresponding to the blade is called the nib or face.

B - shank Connect the handle to the working end of the instrument. Normally smooth, round and tapered. Design Have one or more angles to avoid twisting of the instrument. Hand instruments must be balanced and sharp. Balance allows for the concentration of force onto the blade without causing rotation of the instrument.

Design Balance is accomplished by designing the angle of the shank so that the cutting edge of the blade must not be off axis by more than 1-2 mm. Shank angles : - Mon-angle, bin-angle, triple angle . - Instruments with small short blades may be monangle

Design Instruments with long blades may required two or three angles in the shank to bring the cutting edge near to the long axis of the handle. Such shanks are termed contra angled. Design

Design C- handle(shaft): It is the part grasped in the operator’s hand. Perfectly straight, smooth or eight sided. Serrated for better gripping and control of the instrument. Handles are in conjunction with the shank or it may be separable. Separate type is known as cone-socket handle and allows for replacement of several working ends e.g. mirrors and condensers.

Design Mirror cone-socket handle (mirror)

Nomenclature Black classified all instruments by name according to: Function e . g . scaler , excavator . Manner of use e.g. hand condenser. Design of the working end e.g. spoon excavator, sickle scaler nomenclature. Shape of the shank e.g. mono-angle, bi-angle, contra-angle. These names were combined to form the complete description of the instrument e.g. bi-angle spoon excavator.

Formula Hand cutting instruments have formulas describing the dimensions and angle of the working end. These are placed on the handle using a code of three or four numbers separated by dashes or spaces (e.g. 10-85-8-14). Formula The first number indicates the width of the blade in tenths of a mm (e.g. 10 = 1 mm). The second number primary cutting edge angle measured from a line parallel to the long axis of the handle in clockwise centigrade.

Formula Instrument shank and blade design with formula .

Formula If the edge is perpendicular to the blade, this number is omitted resulting in a 3 numbers code. The third number indicates the blade length in mm (e.g. 8 = 8 mm). Formula The fourth number indicates the blade angle relative to the long axis of the handle in clockwise centigrade e.g. (14) Additional number on the handle is the manufacturer’s identification number.

Formula Additional number should not be confused with the formula number.

Bevels Most hand cutting instruments have on the end of the blade a single bevel that forms the primary cutting edge, two additional edges Additional two secondary cutting edges that extend from the primary cutting edge for the length of the blade. This allows cutting in 3 directions; facial and lingual walls of the proximal cavity. Chisel blade design showing primary and secondary cutting edges.

Bevels Bibeveled instrument have two bevels that form the cutting edge, e.g. hatched excavator.

Bevels Single beveled instrument such as spoon excavator and gingival margin trimmer are used with lateral cutting movement.

Bevels Enamel hatchet also as a single beveled instrument used with direct cutting motion, a planning or lateral cutting designated for right and left to the instrument formula.

Bevels Right and left bevels Bevels To determine this, the primary cutting edge is held down and pointing away. If the bevel appears on the right, it is in the right instrument of the pair, when used it is moved from right to left. The opposite is true for the left instrument of the pair. One instrument is used for work on one side of the preparation and the other for the opposite side of the preparation.

Bevels The cutting edge is perpendicular to the axis of the handle, e.g. binangle chisel. Instrument with slight blade curvature, e.g. Wedelstaedt chisel

Cutting instrument applications Applications can be classified into: Hand cutting instrument Excavators Chisels Removal of caries and Used primarily for refinement of the internal cutting enamel. parts of the preparation .

CUTTING INSTRUMENT APPLICATIONS

CUTTING INSTRUMENT APPLICATIONS Hatchet excavator It has the cutting edge of the blade directed in the same plane as that of the long axis of the handle and is bibeveled .

CUTTING INSTRUMENT APPLICATIONS Hatchet excavator These instruments are used primarily on anterior teeth for preparing retentive areas and sharpening internal line angles, particularly in preparations for direct gold restorations .

CUTTING INSTRUMENT APPLICATIONS Hoe excavator IT has the primary cutting edge of the blade perpendicular to the axis of the handle

CUTTING INSTRUMENT APPLICATIONS Hoe excavator This type of instrument is used for planing tooth preparation walls and forming line angles. It is commonly used in Classes III and V preparations for direct gold restorations.

CUTTING INSTRUMENT APPLICATIONS Hoe excavator Some sets of cutting instruments contain hoes with longer and heavier blades, with the shanks contra-angled. These are intended for use on enamel or posterior teeth.

CUTTING INSTRUMENT APPLICATIONS Angle former excavator It is mon -angled and has the primary cutting edge at an angle (other than 90 degrees), to the blade. It is available in pairs (right and left )

CUTTING INSTRUMENT APPLICATIONS Angle former excavator It is used primarily for sharpening line angles and creating retentive features in dentin in preparation for gold restorations. It also may be used in placing a bevel on enamel margins

CUTTING INSTRUMENT APPLICATIONS Spoon excavator Its blades are slightly curved, the shanks may be bin-angled or triple-angled to facilitate accessibility. Spoon excavators Discoid Cleoid The cutting edges The cutting edges are circular. are claw like

CUTTING INSTRUMENT APPLICATIONS Bin-angled spoon Triple-angled spoon

CUTTING INSTRUMENT APPLICATIONS Cleoid spoon

CUTTING INSTRUMENT APPLICATIONS Discoid spoon

CUTTING INSTRUMENT APPLICATIONS

CUTTING INSTRUMENT APPLICATIONS Straight, slightly curved, or bin-angle : The straight chisel has a straight shank and blade, with the bevel on only one side. Its primary edge is perpendicular to the axis of the handle.

CUTTING INSTRUMENT APPLICATIONS Straight, slightly curved, or bin-angle: The shank and blade of the chisel also may be slightly curved ( Wedelstaedt design)

CUTTING INSTRUMENT APPLICATIONS Straight, slightly curved, or bin-angle: The shank and blade of the chisel also may be bin-angled .

CUTTING INSTRUMENT APPLICATIONS Straight, slightly curved, or bin-angle : The force used with all these chisels is essentially a straight thrust. There is no need for a right and left type in a straight chisel, since a 180-degree turn of the instrument allows for its use on either side of the preparation.

CUTTING INSTRUMENT APPLICATIONS Straight, slightly curved, or bin-angle: The bin-angle and Wedelstaedt chisels have the primary cutting edges in a plane perpendicular to the axis of the handle and may have either a distal bevel or a mesial (reverse) bevel.

CUTTING INSTRUMENT APPLICATIONS Straight, slightly curved, or bin-angle: The blade with a distal bevel is designed to plane a wall that faces the blade's inside surface

CUTTING INSTRUMENT APPLICATIONS The blade with a mesial bevel is designed to plane a wall that faces the blade's outside surface.

CUTTING INSTRUMENT APPLICATIONS Enamel hatchet It is a chisel similar in design to the ordinary hatchet excavator except that the blade is larger, heavier, and is beveled on only one side. It has its cutting edges in a plane that is parallel with the axis of the handle.

CUTTING INSTRUMENT APPLICATIONS Enamel hatchet It is used for cutting enamel and comes as right or left types for use on opposite sides of the preparation.

CUTTING INSTRUMENT APPLICATIONS Gingival margin trimmer Similar in design to enamel hatchet except the blade is curved. Right and left types: Right pair is for either a mesial or distal gingival margins. Left pair is for a mesial or distal margins

CUTTING INSTRUMENT APPLICATIONS Gingival margin trimmer

CUTTING INSTRUMENT APPLICATIONS Gingival margin trimmer When the second number in the formula is 90-100, it is used for distal gingival margins. When this number is 75-85, the pair is used to bevel the mesial margins. 100 and 75 pairs for steep margins for inlay preparation while 90-85 for slight bevel in amalgam preparations.

CUTTING INSTRUMENT APPLICATIONS Gingival margin trimmer Uses of GMT : Beveling of the gingival margins of proximoocclusal preparations. Beveling of the axiopulpal line angle.

CUTTING INSTRUMENT APPLICATIONS Gingival margin trimmer 3. Performing a gingival lock (reverse bevel), placed on the gingival seat. e.g. GMT 100 for the distal and GMT 75 for the mesial.

Sharpening Cutting instruments Sharpening The cutting edge of the hand instrument should always be kept sharp as dull instruments may cause: Loss of control. More pain. Prolonged time for the operative procedure. Reduce the quality and precision of tooth preparation.

cutting instrument Sharpening Sharpening equipment 1. Stationary sharpening stone e.g. Arkansas stone, silicon carbide.

Sharpening 2. Mechanical sharpener; moves at low speed while the instrument is held at the opposite angle and supported by a rest i.e. easier and less time consuming. Mechanical Sharpener

Instrument grasp There are four grasps used with the hand instruments : Modified pen. Inverted pen. Palm and thumb. Modified palm and thumb. With each grasp proper rest and guard is important

1. Modified pen grasp It is similar to that used in holding a pen except that the thumb, index and middle fingers contact the instrument while the tips of the ring and little fingers are placed on the working tooth as a rest. The palm of the hand is facing away from the operator.

Pen grasp Modified pen grasp

2. inverted pen grasp If the hand is rotated so that the palm faces more toward the operator. If is used in the lingual and labial surfaces of anterior teeth Inverted pen grasp

3. Palm and thumb grasp(grasp of power) The handle of the instrument is placed on the palm of the hand and grasped by all the fingers while the thumb is free of the instrument and rest on the nearby tooth of the same arch. Palm and thumb grasp

4. Modified palm and thumb grasp The same as in palm and thumb grasp but the thumb is rested on the tooth being prepared. Used in the upper arch. Modified palm and thumb grasp

Instrument rest rests : A proper instrument grasp must include a firm rest (support) to steady the hand during operative procedures. The support may be gained from hard tissue. Soft tissue rest or too distant hard tissue rest does not afford a reliable control.

Indirect rest may be gained by using the index finger of the opposite hand to rest on the shank of the instrument. The operating hand rests on the opposite hand which rests on stable oral structures.

Instrument guards guards : The use of interproximal wedges to protect soft tissues from contact with sharp rotary cutting instruments.

Cleaning and Sterilization Cleaning and Sterilization Instrument Cleaning and Sterilization

Cleaning All instruments need to be cleaned and thoroughly dried before they sterilized . Cleaning and Sterilization

1- Hand Scrubbing Advantages Effective if performed properly. Disadvantages Increases chances for operator injury. Increases spread of contamination through splatter. Labor-intensive. Need proper care of scrub brush

2- Ultrasonic Cleaning Advantages Safer than hand scrubbing. Effectively cleans all instruments . Reduces chances for spread of contaminants through splatter. Allows for more efficient use of staff time Disadvantages Microorganisms may accumulate in cleaning solution. Ultrasonic cleaning will not remove hardened Permanent cement , (Solution: remove cement while it is still soft.).

3- Automated Washer Advantages Safer than hand scrubbing. Effectively cleans all instruments . Reduces chances for spread of contaminants of contaminants through splatter and aerosols. Allows for more efficient use of staff time. Disadvantages Not all instruments are compatible with automated washers. Please see manufacturer's instructions for detailed requirements.

Sterilization process by which an article, surface or medium is freed of all living microorganisms. Most dental offices have a designated area for instrument reprocessing that is separate from the dental treatment room. This is ideal, since cleaning, sterilizing and storing instruments in the same room where the delivery of patient care is provided increases the risk of cross-contamination.

Some instruments and materials are single use only. Single-use items should be segregated in the operatory, and those that are sharp or otherwise pose a risk of injury must be discarded into a sharps container . Items without risk, such as a saliva ejector, can be thrown into the trash. To prevent accidental injury with the contaminated instruments, special handling should be used to transport the instruments to the cleaning and sterilization area.

Although heavy-duty gloves (utility gloves) may feel more awkward than examination gloves, they provide extra protection while handling instruments during the cleaning, rinsing, drying, packaging and sorting procedures that take place during instrument reprocessing . Utility gloves

1- Steam preasure strillization (autoclaving Sterilization with steam under pressure is performed in a steam autoclave . For a light load of instruments, the time required at 250'F (121° C) is a minimum of 15 minutes at 15 lbs of pressure. Time for wrapped instruments can be reduced to 7 minutes if the temperature is raised to approximately 273° F (134° C) to give30 pounds of pressure.

An example of a steam pressure sterilizer (autoclave )

Advantages of Autoclaves: Autoclaving is the most rapid and effective method for sterilizing cloth surgical packs and towel packs. Automated models are available. Although they still can be misused or fail almost as often as no automated ones; they must be evaluated with a biologic spore test monitoring system.

Disadvantages of autoclaves : Items sensitive to the elevated temperature can not be autoclaved. Autoclaving tends to rust carbon steel instruments.

2- CHEMICAL VAPOR PRESSURE STERILIZATION (CHEMICLAVING ) Sterilization by chemical vapor under pressure is performed in a Chemiclave. Chemical vapor pressure sterilizers operate at 270° F (131° C) and 20 pounds of pressure. They are similar to steam sterilizers and have a cycle time of approximately half an hour.

Advantages of Chemiclaves : Carbon steel and other corrosion-sensitive burs, instruments, and pliers are said to be sterilized without rust or corrosion. Disadvantages of Chemiclaves . Items sensitive to the elevated temperature will be damaged. Instruments must be lightly packaged in bags obtained from the sterilizer manufacturer. Towels and heavy cloth wrappings of surgical instruments may not be penetrated to provide sterilization. Routinely use biologic spore test monitoring strips to confirm heat penetration of heavy packs before use.

Chemical vapor pressure sterilizer (Chemiclave )

3- Dry heat sterilization ( dryclave ) Is an excellent means of sterilization sharp instrument but rubber and plastic material can not be sterilized by this method . Dry heat sterilizers for use in dental offices are available, but all that is necessary is an oven that will maintain a temperature of 160°C(320°F) It imperative that all debris be removed from an instrument before it placed in a dry heat sterilizer * Holding period : 160°C(320°F),1 hour .

Advantages of this method Is an excellent means of sterilization sharp instrument. Instrument not corrode or rust. Disadvantages A lower temperature or a shorter period will not produce the desired result . The higher temperature of a dry-heat sterilizer means that paper will scorch and plastic will melt. some hand pieces can not be sterilized by this method

Cox rapid heat transfer dry heat sterilizer

4- ETHYLENE OXIDE STERILIZATION- Ethylene oxide sterilization is the best method for sterilizing complex instruments and delicate materials. Ethylene oxide gas is toxic for all viruses and bacteria at room temperature on exposure for 8-10 hr at elevated temperature . This method requires rather expensive equipment .

Room temperature ethylene oxide sterilizer

BOILING WATER Boiling water does not kill spores and cannot sterilize instruments. However, heat can reach and kill blood borne pathogens in places that liquid sterilants and disinfectants used at room temperature cannot reach. Boiling is a method of high-level disinfection that has been used when actual sterilization cannot be achieved (e.g., in case of a sterilizer breakdown)

New methods of sterlization **Various new methods of sterilization are under investigation and development. The microwave oven has major limitations for sterilizing metal items, by either damaging the machine or not reaching all sides of the instruments. microwave oven Microwave oven

Ultraviolet light is not highly effective against RNA viruses such as HIV and is not very effective against bacterial spores. Ultraviolet light

Incomplete exposures of all surfaces and poor penetration of oil and debris are other limitations. Ultraviolet irradiation may be useful for sanitizing room air to help control tuberculosis bacteria .

Instrument storage in dental cabinet After the instrument are sterilized, they are placed in proper place in a dry condition . The portions of dental cabinet designated for hand instrument contain grooved glass or metal trays. These instrument containers must be kept in clean and aseptic condition. Hey should also contain protective medium for cutting edges of the instrument .

The purpose of this :

Effects of Sterilization Sterilizing carbon steel instruments by any of (cold disinfection, boiling water, steam under pressure (autoclave) causes discoloration, rust, and corrosion. M inimizing these problems are available. 1- E lectroplate the instrument. This affords protection, except on the blade, where use and sharpening remove the plating.

2- use of rust inhibitors, which are soluble alkaline compounds. 3- I s to remove the instruments promptly at the end of the recommended sterilizing period, dry them thoroughly, and place them in the instrument cabinet or on the tray setup.

Non cutting instrument

1. Amalgam condenser It is a dental instrument used for compacting silver amalgam while in a plastic state, used for restoring teeth to a natural contour. Condensers come in single- and double-ended designs. They have various shaped and sized working ends, which may be smooth or serrated.

Various Amalgam condensers

2. Mouth mirror M outh mirror or dentist's mirror is an instrument used in dentistry. The head of the mirror is usually round, and the most common sizes used are the No. 4 and No. 5. A No . 2 is sometimes used when a smaller mirror is needed, such as when working on back teeth with a dental dam in place. I ts most important functions are: A llowing indirect vision by the dentist . R eflecting light onto desired surfaces. R etraction of soft tissue.

4. others Carvers : After the amalgam is condensed, it must then be carved to approximately the same original tooth structure. Carvers have sharp cutting edges that are used to shape, form, or cut tooth anatomy into amalgam restorations.

Carvers

B. Burnishers : When the carving is complete, the dentist may use burnishers . U sed to S mooth and polish the restoration. R emove scratches left on the amalgam surface by a carving instrument.

Burnishers

C. disposable brush U sed with etching and bonding procedures associated with composite resins is a disposable brush with a reusable handle. A iding in good infection control practices. Disposable brush and handle. Disposable brush and handle.

Thank You 

Done By : Ghadah Sidqi Abrar Abdullah G(3) , L(5) .
Tags