Derivatives pricing and valuation futres.ppt

HamzaAmin85 59 views 24 slides May 20, 2024
Slide 1
Slide 1 of 24
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24

About This Presentation

it is about derivative contract


Slide Content

Derivative Pricing
ZuhairM Ismail

INTRODUCTION
2

Type of Derivatives
FutureContracts
Forwardcontracts
Options
Swaps
Warrants
Theabovearethecommonusedderivatives.
3

FORWARD RATE
AGREEMENTS
4

Parties involved
Afutureborrowerwouldbeinterestedinprotecting
himselfagainstariseininterestrates.Hewillbeabuyer
ofanFRA
Borrower= BuyerofFRA
Alender,ontheotherhand,wouldwishtoguardagainst
interestratesfalling.Effectivelyhewouldbethesellerof
theFRA
Lender = SellerofFRA
5

FRAP=((R−FRA)×NP×P)×( 1 ​)
Y 1+Rx(P/Y)
FRAP=FRApayment
FRA=Forwardrateagreementrate,orfixedinterest
ratethatwillbepaid
R=Reference,orfloatinginterestrateusedinthecontract
NP=Notionalprincipal,oramountoftheloanthat
interestisappliedto
P=Period,ornumberofdaysinthecontractperiod
Y=Numberofdaysintheyearbasedonthecorrectday-
count convention for the contract​
ForwardRateAgreementPricingor
InterestRateSwapAgreementPricing

Aborrowerentersintoaforwardrateagreementwiththegoal
oflockinginaninterestrateiftheborrowerbelievesrates
mightriseinthefuture.
Sothenaborrowermightwanttofixtheirborrowingcosts
todaybyenteringintoanFRA.
NoCashispaidatthetimeofenteringintothecontract.
ThecashdifferencebetweentheFRAandthereferencerate
orfloatingrateissettledonthevaluedateorsettlementdate.
Iftheamountispositivethenthesellerofthecontractpaysto
thebuyer.SoeffectivelyReferencerate>FRArate.
Iftheamountisnegativethenthebuyerpaystotheseller.So
effectivelyReferenceRate<FRArate.
Swap Agreement Pricing Explained
7

Youbuya2x5FRAatarateof5.43.
Whatisyourviewofinterestrates?
Answer:
YouarebuyingtheFRAbecauseyouthinkthesettlement
pricewillbehigherandyouwillmakeaprofit.Therefore
youbelieveinterestrateswillrise.
Swap or FRA example
8

AcurrencyForwardAgreementismostlyahedgingtool
Thisisabindingcontractasallforwardcontractsare.
Thepurposeistolocktheexchangerateforthepurchaseof
orsaleofacurrencyonafuturedate.
Acurrencyforwardsettlementcaneitherbeoncash
(difference)orondeliverybasis.
Howeverthesamei.e.cashordeliveryhastobespecified
beforehandsothatitismutuallyknownandacceptableto
bothparties.
Currency Forward Agreement
9

Example
Importerwantstolockintheexchangeratefor30daysashehasto
makeaLCpayment.
AmountofLCpaymentisUSD1,000,000/-
CurrentExchangerateis PKR179/1USD
Daysare30days
Liborisbeingusedforthisexample
Soif1monthLiboris2%
Thentheratetheoreticallywouldbe
179*0.02=3.58
3.58/360daystomakeita1dayrate=0.009944
0.009944isthenmultipliedby30days=0.30approx.(taking2
decimals)
Nowtheoreticallyanyratethattheimportergetsonoraround179.30is
agoodrateasheisbasinghisdecisionontheinterestrateconvention
whichisagoodbasis.
Currency Forward Agreement
10

Example
practicallyhoweverhewillnegotiateandtryandgetabestpossible
deal.
Nowsupposethisisadeliverycontract.
On30days,thebankwillbuytheactualdollars(supposetheyhavenot
hedgedthetransaction;otherwisetheynormallywould).
Soifrateis179.10thenthecustomerhasactuallypaidahigherrateand
looses0.20onthetransaction.HegetshispromisedUSD1Mandpays
fortheLC.
Iftherateis179.50thentheBankactuallyloosesmoneyonthedealas
theyhavetopayahigheramountonthedeal.Againtheimportergets
hispromisedUSD1MandpaysfortheLC.
IncaseofaNDcontract,onlydifferentialsarepaid;soincaseof179.10
thentheimporterhastopayPKR200KtotheBankandviceversa.
InthisexampleanNDcanonlytakeplaceifinthemiddleoftheforward
deal,theLChasbeencancelledandtheyjusthonorthecommitmentat
theendoftheforwardagreementtokeeptherelationssmoothoneither
side.
Currency Forward Agreement -2
11

FORWARD FORWARDRATES
12

Example
Sofarwehavetakenintoconsiderationthespotvsforwards.
Howeverattimes,thereareinstanceswhentheforward/forward
processingoftransactionneedstotakeplace.
FORWARD FORWARD INTERESTRATESAREPRICESWHICH
PERTAINTODAYTODEPOSITPERIODSCOMMENCING INTHE
FUTURE
WHATISTHERATE?
BorrowFundsfor3months
ShortFundsfor3months
0 3 6
Lendfor6months
Forward Forward Rates
13

The need for forward forward rates
Alotoftransactionsarebasedonthefuture
Exportersreceivingfunds
Importershavetomakematuritypayments
Fundsneedtoberepatriatedforentitiesoperatingas
subsidiaries,etc.
Ratesneedtobefixedinadvancetoavoidrisk
(discussedinthecomingslides)andincaseofrolling
overcreditfacilitieswhichisagainaformofrisk
management.
Rateswouldberequiredincaseofmismatches.
Institutionslend/borrowfundsatvariousmaturitiesand
mayhavea‘maturitygap’whichisdifferentthana
‘liquiditygap’.
14

The need for forward forward rates 2
Soadealerthanhedgeandcoverhispositions.This
wouldbepureriskmanagementtechniquesandmost
widelyusedtosupportoperationsininstitutionslike
banks.
Adealermayalsointendto‘offer’theproductasatool
toearnprofits.Notonlythenwouldthisbeagood
marketproductbutalsoutilizedtoearnprofits.Although
notwidelyusedbutincasesofarbitrageanopportunity
arisesandprofitsaremade.
Speculationcanbedoneandbasedon‘views’ofdealers
positionsmaybetaken.Anexample=ifdealerthink
ratesaregoingtofallthenshorttodayandcoverwhen
interestratesaredowntomakeprofits.
15

Forward Forward Rates 2
16

Forward Forward Rates example
17

Forward Forward Rates explained
Thefirststepistoanalyzethefactthatlendingoffundsistotake
place
SupposeitisUSD1M
Sotheinterestwillbereceivedinsixmonthstime.
interestrecv=(USD1M*4%*180days=USD20,000/=)
Meanwhilesinceitneedstobesquared,wecanimmediatelyborrow
funds;thedealavailablerightnowisfor3months.
interestpay=(USD1M*3.5%*90days=USD8,750/-)
Differenceintherate=USD11,250/-
Soinordertoearnthedifferencetherateshouldnowcompensate
(fornownoloss/noprofitisbeingassumedwhichisthebasicneed
orbetterrequirementofhedging)
rate=11,250/1,008,750*360/90*100%=4.461%
Thereby4.461%wouldbetheforwardforwardrate.
18

Forward Forward Rates Risks
Theratescanchange–interestraterisk
Therateforthegapperiodorfrom3to6monthsmaychangeatthe
3monthtimeperiod–reinvestmentrisk
IndividualriskslikeCreditRiskoftheinstitutions
Liquidityriskisalsopresentwherebytheliquiditymatrixofthe
institutioncanchangethe‘gap’mayincreaseinourexampleormay
squeezedown.
Theremaybemarketrisksincludingregulatory/policychanges.
Lastbutnottheleastasthesearetailormadeproducts(forwards)
thereisalwayscounterpartyrisk.Theotherpartymaynotprocess
oracttheoppositepositiontoyoursexposingyoutoadoubleloss.
19

Forward Forward Rates Risks
Theratescanchange–interestraterisk
Therateforthegapperiodorfrom3to6monthsmaychangeatthe
3monthtimeperiod–reinvestmentrisk
IndividualriskslikeCreditRiskoftheinstitutions
Liquidityriskisalsopresentwherebytheliquiditymatrixofthe
institutioncanchangethe‘gap’mayincreaseinourexampleormay
squeezedown.
Theremaybemarketrisksincludingregulatory/policychanges.
Lastbutnottheleastasthesearetailormadeproducts(forwards)
thereisalwayscounterpartyrisk.Theotherpartymaynotprocess
oracttheoppositepositiontoyoursexposingyoutoadoubleloss.
20

Forward Forward Rates Risks 2
Anyphysicalcashtransactioninflatesthebalancesheet
•Fullcapitaladequacyrequirementsapply.
•Fullcreditlineimplicationsapply.
•Cashmarketspreadimplications.
•Lossofliquidity.
Theseconsiderationscanalsohamperthedealsintheforward
forwardmarketstobeunattractive.
21

FUTURES
22

Future Pricing
Thepriceofafuturesistakenin3steps:
Spotpriceoftheunderlyingasset
Financingcost(whichshouldincludestorageand/orinsurance
costoftheassetincaseswhererequired)
Cashflowgeneratedbytheunderlyingasset(ifany);thisis
becauseduringthetimewherethecontractisbeingboughtthe
assetisstillintheuseofthesellerandtherebyitisacosttoyou
asabuyer.
23

Future Pricing –an example
Thespot/readypriceofoilisUSD95
The1yearfinancingforexampleis5.5%p.a.
InsuranceandstoragecostisletssayUSD5
PriceofFutures:
USD95+(95*0.055)+5=105.225(1yearfutureprice)
Thisisthepricewherethereisnoprofitorloss.
Ofcourseinreality3possibleoutcomesasdiscussed
beforecananddotakeplace.
24
Tags