Describe the function their types examples

ahmadlodhi25ap 7 views 11 slides Oct 24, 2025
Slide 1
Slide 1 of 11
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11

About This Presentation

This summarizes the function into more than 20 slides and it shows them with their example that typed their graphs


Slide Content

Author: ah**[email protected] Created with Pi Functions: An Overview

CONTENTS 1. History 3. Introduction 5. Diagrams & Expressions 2. Mathematicians Linked to Functions 4. Types of Functions 6. Summary

1. History Gottfried Leibniz (1646-1716) first used "function" in 1673 for curve quantities. Leonhard Euler (1707-1783) formalized f(x) notation in 1734. Peter Dirichlet (1805-1859) gave the rigorous modern definition in 1837 as correspondence between sets. Georg Cantor (1845-1918) extended it via set theory. Isaac Newton (1643-1727) and Leibniz used functions in calculus for rates and areas.

3. Introduction Definition: A function f: A to B assigns each element in A exactly one element in B. Key: Each input has EXACTLY ONE output (unlike relations). Domain: Set A (all inputs). Codomain: Set B (all possible outputs). Range: Actual outputs (subset of B). Example: A=(1,2,3), B=(a,b,c,d), f=(1,a),(2,c),(3,a). Domain=(1,2,3), Range=(a,c). Function vs Relation: NOT Function: R=(1,x),(1,y) - 1 maps to two! IS Function: f=(1,x),(2,y) - each maps once.

4. Types of Functions One-to-One (Injective) Different inputs give different outputs. Ex: f=(1,a),(2,b),(3,c). Onto (Surjective) Every codomain element is used. Ex: f=(1,x),(2,y),(3,x). Bijective Both one-one and onto. Ex: f=(1,a),(2,b),(3,c). Identity f(x)=x, maps to itself. Ex: I=(1,1),(2,2),(3,3). Constant All map to one value. Ex: f(x)=5 for all x. Polynomial f(x)=ax squared+bx+c. Ex: f(x)=2x squared-3x+1. Rational f(x)=p(x)/q(x), q not 0. Ex: f(x)=1/(x-2). Modulus f(x)=|x|, always positive. Ex: |-5|=5, |3|=3. Signum 1 if x greater 0, -1 if less, 0 if zero. Ex: sgn(5)=1, sgn(-3)=-1. Greatest Integer Floor function, largest int below. Ex: floor 3.7=3, floor -2.3=-3.

5. Diagrams & Expressions Arrow Diagram Example: f: (1,2,3) to (a,b,c). Domain: 1, 2, 3 arrows to Codomain: a, b, c.

Vertical Line Test If any vertical line cuts the graph more than once, it is NOT a function. This ensures one output per input.

Graph Types Linear f(x)=mx+c (straight line). Cubic f(x)=x cubed (S-curve). Quadratic f(x)=ax squared+bx+c (parabola). Reciprocal f(x)=1/x (hyperbola).

Key Formulas Composition (gof)(x)=g(f(x)). Ex: f(x)=2x, g(x)=x+3, then gof(x)=2x+3. 1 Even/Odd Even: f(-x)=f(x) (x squared). Odd: f(-x)=-f(x) (x cubed). 3 Inverse f inverse exists if bijective. f(f inverse(x))=x. Ex: f(x)=2x+1, f inverse=(x-1)/2. Periodic f(x+T)=f(x). Ex: sin(x) period 2pi. 2 4

Domain Rules Polynomial all real numbers. Rational exclude denominator zeros. Root expression under root greater or equal to 0.

Properties 1 Composition associative: (fog)oh=fo(goh). 4 2 If f,g a NOT commutative: fog not equal to gof. 3 Identity: foI=Iof=f.
Tags