dien-tu-tuong-tu_pham-nguyen-thanh-loan_chapter-1-_diodes-and-applications - [cuuduongthancong.com] (1).pdf

NGUYNTHNHQUC2 10 views 54 slides Mar 07, 2025
Slide 1
Slide 1 of 54
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54

About This Presentation

hhjjkhjkhkjhkjhjkhkjhj


Slide Content

Electronics Circuits I
Chapter 1: Diodes and applications
Dr. Pham Nguyen Thanh Loan
Ha Noi, 21/8/2013

Chapter 1: Diode & applications
Contents
Diode – Structure, operation and equivalent circuit
Rectifiers circuits
Limiters circuits
Double voltage and so on
Zener diode and its applications

Diode structure
PN Junction
Depletion region: no carriers
Ion located at the interfaces with P/N  barrier voltage V
D  drift
current I
S (i
drift)
Diffusion phenomenon: flow of charges from high concentration
region to lower concentration region  I
D (i
diff)
Equilibrium of PN junction: Is + I
D = 0

PN junction and its symbol: Diode
Kathode (K)
Anode (A)
Anode (A) Kathode (K)

Model of ideal diode
Two terminals
Current ON in one direction
V
D = 0V
FORWARD BIAS
I
D ↑ very fast
REVERSE BIAS
I
D ≈ 0

Model of practical diode (VD ≠ 0)
FORWARD BIAS: applied
voltage > V
D
V
D ≈ 0.7V ( Si)
V
D ≈ 0.3V ( Ge)
 Voltage drop on diode = V
D
REVERSE BIAS:
Leakage current I
S ≈ 0
 Open circuit

PRACTICAL Diode

PRACTICAL Diode

PRACTICAL Diode (VD ≠ 0)
0.3(Ge) 0.7(Si)
(Ge)
(Si)
V
D(V)
I
D(mA)
I
s(Si)=10nA
I
s=reverse saturation current
I
s(Ge)

PRACTICAL Diode

PRACTICAL Diode - multimeter

PRACTICAL Diode - multimeter

Large signal model

Small signal model

Applications
Rectifiers
Half wave
Full wave
Wien bridge
Using capacitor (filters)
Limiters
Double voltage

Rectifiers

Half wave

Half wave: 1
st
half positive periode
Diode: OFF, I
D=0
V
out = 0

Diode: ON
V
out = V
in - V
D

Half wave with transformer
 Example: Analyze the following circuit

Fullwave rectifier
Waveform of input and output signal

Fullwave rectifier: schematic

Fullwave rectifier: operation

NOTES: CURRENT
flows through load
resistor following a
unique direction and
can’t be reversed
Fullwave rectifier: operation

Determine PIV
 PIV = V
P(sec) + 0.7V

Ex: Determine PIV

Bridge rectifier

Bridge rectifier

PIV = V
P(OUT) + 0.7V
Bridge rectifier

Bridge rectifier

Filters

Roles of Capacitor

Input: Sinusoidal waveform, imput f: 60Hz
Output frequency

Ripples observed on output signals
Same filter cap, load and input signal
Ripple consideration

A supply voltage
Used in most electronics devices
Simple, cheap and easy to construct

output from 1.25 to 6.5V
A supply voltage –

Limiters

Different operation of diodes
Input and output waveforms

Similar Zener diode operation
Input and output waveforms

Limiters associated with voltage divider
Ex: Analyze this circuit

Clamp circuit
Displace the DC level at output
Consisting of:
 Capacitor
 Diode
 Resistors
 battery
Resistor and capacitor are chosen how to
guarantee a τ = RC big enough so that the
discharge time of capacitor is still higher than the
reverse period of diode

1
st
half period (+)





Clamp operation
+
R
Vo
-
+
-
Vi
C
• 0 T/2: Diode ON (short circuit)
• C charges to level V
i
• V
o= 0 V
2
nd
half period (-)

• T/2 T: Diode OFF (open circuit),
Kirchoff Voltage Law:
- V- V- V
o = 0 and
 V
o = -2V

+
R
Vo
-
+
-
V
C
Vo
-
+
V

Results from Circuit Maker

Results from Circuit Maker

Positive Clamp circuit

Negative clamp circuit

Negative clamp circuit

voltage doubler

voltage doubler

Triple voltage

Mạch nhân bốn

Supply voltage

Signals at different nodes

Signals at different nodes

Homeworks
Chapter 2: 1, 5, 6, 10, 11, 15, 21, 23, 24, 27, 30, 34,
37, 42, 47, 49, 52
Tags