dien-tu-tuong-tu_pham-nguyen-thanh-loan_chapter-3-_fet - [cuuduongthancong.com].pdf

NGUYNTHNHQUC2 28 views 77 slides Mar 07, 2025
Slide 1
Slide 1 of 77
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77

About This Presentation

hjghgjh


Slide Content

CHAPTER 3:
TRANSISTOR MOSFET
DR. PHAM NGUYENTHANHLOAN
Hà Nội, 9/24/2012
1

Chapter 3: MOSFET
Introduction
Classifications
JFET
D-FET (Depletion MOS)
MOSFET (Enhancement E-FET)
DC biasing
Small signal analysis
Equivalent small signal circuit
2

FET Introduction
High input impedance, nMΩ-n100MΩ
Controlled by voltage (≠ BJT)
Low power consumption
Low noise, suitable for small signal
Low impact of temperature
Using as switch for low power application
Small size and adapt for integrated circuit
3

Classification
JFET-Junction Field Effect Transistor
N and P channels
MOSFET-Metal Oxide Semiconductor FET
Depletion MOS
N and P channels
Enhancement MOS
N and P channels
4

Classification (cont’d)
JFET D-FET E-FET (MOSFET)
5

JFET
Structure and Operation
Characteristic Curve
Compare with BJT
Examples, datasheets
6

JFET –Structure
7

JFET –Operation
V
GS = 0, V
DS>0 increase gradually, I
Dincreases and then saturates
8

JFET –Operation
V
GS = 0, V
DS = V
P, I
D= I
DSS
V
P: pinch off voltage (pinch-off)
I
D = I
DSS(1 -V
GS/V
P)
2
9

JFET –Operation
V
GS < 0, V
DS > 0, Saturation current reduces when V
GS V
pinch-off
V
GS= V
P, I
D= 0
10

JFET –Characteristic Curves
I
D= f(V
GS) Shockley equation:
I
G ≈ 0A (gate current)
I
D = I
S (I
D drain current, I
Ssource current)
11
I
D = I
DSS(1 -V
GS/V
P)
2

JFET –Characteristic Curves
P-channel, I
DSS = 6mA, V
P = 6V
N-channel, I
DSS = 8mA, V
P = -4V
12

JFET –Symbol
13

JFET
2N5457
14

Datasheet-2N5457
Rating Symbol ValueUnit
Drain-Source voltage V
DS 25 Vdc
Drain-Gate voltage V
DG 25 Vdc
Reverse G-S voltage V
GSR -25 Vdc
Gate current I
G 10 nAdc
Device dissipation 25
0
C
Derate above 25
0
C
P
D 310
2.82
mW
mW/
0
C
Junction temp range T
J 125
0
C
Storage channel temp rangeT
stg -60 to
+150
0
C
15

Datasheet-2N5457-characteristics
Characteristic SymbolMinTypMaxUnit
V
G-S breakdown V
(BR)GSS-25 Vdc
I
gate reverse(Vgs=-15, Vds=0)I
GSS -1.0nAdc
V
G-S cutoff V
GS(off)-0.5 -1.0Vdc
V
G-S V
GS -2.5-6.0Vdc
I
D-zero gate volage I
DSS 1.03.05.0mAdc
C
in C
iss 4.57.0pF
C
reverse transfer C
rss 1.53.0pF
16

MOSFET
Structures
Operation
Characteristic Curves
17

MOSFET –Structure
N-channel Enhancement EMOSN-channel Depletion DMOS
18

MOSFET –Operation
N-channel EMOS
V
GS > V
TH, V
DS > 0
N-channel DMOS
V
GS = 0, V
DS > 0
19

DMOS–Transfer characteristic curves
Similar to JFET, transfer characteristic curve I
D= f(V
GS)
follows Shockley equation: I
D= I
DSS(1 -V
GS/V
P)
2
Can work at: V
GS> 0, I
D> 0
20

EMOS–Transfer characteristic curve
Transfer characteristic curve:
I
D= k(V
GS–V
T)
2
with V
T > 0 (for NMOS) and Vt< 0 for PMOS)
When V
GS< V
T, I
D= 0
21

MOSFET –Transfer characteristic curve
P-channel depletion
22

MOSFET –Transfer characteristic curve
P-channel enhancement
23

MOSFET –Symbol
EMOSDMOS
24

EMOS
2N4351
25

Datasheet-2N4351-EMOS
Characteristic SymbolMinMax Unit
V
DS breakdown V
(BR)DSX25 Vdc
I
D-zero gate volage,
Vds=10V,Vgs=0, 25C –150C
I
DSS 10
10
nAdc
µAdc
I
gate reverse(Vgs=+-15, Vds=0) I
GSS +-10nAdc
V
DS on Voltage V
DS(on) 1.0 V
C
in(Vds=10V,Id=2mA,f=140kHz) C
iss 5.0 pF
C
DS(Vdsub=10V,f=140KHz) C
rss 5.0 pF
R
DS(Vgs=10V,Id=0,f=1KHz) R
ds(on) 300ohms
26

VMOS
VMOS –Vertical MOSFET, increase channel lenght
Increase drain current thanks to large space of heat release
High switching speed
27

CMOS
CMOS=Complementary MOSFET
pMOS và nMOS: fabricated on same wafer
Reduce size and power consumption, increase switching speed
Analog/Digital IC design
28

Resume
JFET
DFET
MOSFET
29

Biasing types
Fixed bias
Self-biasing
Voltage divider biasing
Feedback biasing
30

Some noted
With all kinds of FET:
I
G= 0A
I
D= I
S
For JFET& D-MOSFET:
I
D= I
DSS(1 –V
GS/V
P)
2
For E-MOSFET(MOSFET):
I
D= k(V
GS–V
T)
2
(saturation mode)
Determine Q-point (DC operating point) and DC load line
31

Fix biasing (ex: JFET)
I
G= 0A
V
S= 0
V
GS= V
G= -V
GG
I
D = I
DSS(1-V
GS/V
p)
2
V
Gis fixed at V
GG
32

Fix biasing
I
D = I
DSS(1-V
GS/V
P)
2
Build transfer characteristic
curve from this table:
V
GS I
D
0 I
DSS
0.3V
P I
DSS/2
0.5Vp I
DSS/4
V
P 0mA
DC load line:
V
GS= -V
GG
Intersection between DC load
line and trans. Charact. Curve
Q point
33

Temperature effect
Leakage current I
GSSincreases
when t0 increases cannot
neglect RGat mentioned
previouslyso:
Q will move from :
V
GS= V
GG+ I
GSS*R
G
new Q-point
34

Impact of temperature
Question: If V
GG=-1V& R
G=1 MΩ. I
GSS=1nA at 25°C and increase
double when temperature increases 10
o
C. Determine V
GSat 125
o
C ?
35

new Q-point
Answer:
At 25
o
C, I
GSS×R
G=10
-9
×10
6
= 1mV, can
be neglected when compare with V
GG= -
1V (or new V
GS= -999mV).
Q point at 125
0
C is shifted to a new
point and it is far from the initial Q
point at room temperature
36
Question: If V
GG=-1V& R
G=1 MΩ.
I
GSS=1nA at 25°C and increase double when
temperature increases 10
o
C. Determine V
GS
at 125
o
C ?
When Temp. increases to 125
o
C, current
I
GSSincreases to 2
10
times ( ≈10
3
)
I
GSS= 10
3
×1nA =1µA
I
GSS×R
G=1µA* 1MOhm = 1V
New Q point: V
GS= 0V & I
D = I
DSS
Impact of temperature

Self biasing
What is the main difference compared to fixed biasing?
Role of R
S?
Remove R
Gto reduce impact of temperature?
38

Self-biasing
Loop at input:
I
G= 0 => V
G= 0V V
GS= -I
SR
S (1)
I
D = I
DSS(1-V
GS/V
p)
2
(2)
To determine Q point:
Sole the equation system: (1) + (2)
Or by using curve method as
shown in the paragraph (intersection
point)
Consider the impact of Temp.?
39

Voltage divider biasing (ex: JFET)
I
G= 0, output current I
D is controlled by V
GS
This biasing method is usually used for FET
40

Voltage divider biasing (ex: JFET)
V
G = V
DDR
2/(R
1+R
2)
DC load line is: V
GS = V
G-I
DR
S(1)
R
Svaries shift of Q point and DC
load line
Characteristic curve of FET
I
D = I
DSS(1-V
GS/V
P)
2
, (2)
To determine Q point:
Sole the equation system: (1)+(2)
Or by using curve method as
shown in the paragraph (intersection
point)
41

V
G= V
DD* 10MΩ/(110MΩ+10MΩ)
DC load line: V
GS= V
G–I
S*750Ω(1)
I
Dcurrent of DMOS:
I
D = I
DSS(1-V
GS/V
P)
2
(2)
To determine Q point:
Sole the equation system: (1) +
(2)
Or by using curve method as
shown in the paragraph (intersection
point)
42
Voltage divider biasing (ex: DMOSFET)

With DMOS: I
D = I
DSS(1-V
GS/V
P)
2
V
GScan be positive
43
Voltage divider biasing (ex: DMOSFET)

With EMOS:
I
D = k(V
GS-V
T)
2
k=I
Don/(V
GSon-V
T)
2
44
Voltage divider biasing (E-MOSFET)

With EMOS: I
D = k(V
GS-V
T)
2
where k = I
D-on/(V
GSon-V
T)
2
Draw transfer characteristic
curve of E-MOSFET
45
Voltage divider biasing (ex: E-MOSFET)

Feedback biasing (ex: E-MOSFET)
At the node G:
I
G= 0 V
G= V
D
46

At the node G: I
G= 0 => V
G=
V
D
DC load line
V
GS= V
DS= V
DD -R
DI
D (1)
Transfer char. equation:
I
D = k(V
GS -V
T)
2
, (2)
k = I
Don/(V
GSon-V
T)
2
Solve equ. Sys. (1,2) or use
paragraph method
47
Feedback biasing (ex: E-MOSFET)

Example
Question: Determine Q (I
D, V
GS) point Q of these circuits?
48

Example
49
Question: Determine Q (I
D, V
GS) point Q of these circuits?

Example
50
Question:DetermineV
GSand
V
DSfortheE-MOSFETcircuit
above.Giventhatthis
MOSFEThasminimumvalues
ofI
D(on)=200mAatV
GS=4V
andV
th=2V.
Question:DetermineI
Dwith
V
th=3V.

Analyze the circuit for AC signal
(small signal)
51

Small signal model
52

Transconductance
g
m= ∆I
D/ ∆V
GS= d(I
D(V
GS))
Derivation of current I
Das
function of V
GS
Slope of I
D(V
GS) at Q point
53

Transconductance g
m (JFET & DMOS)






P
GS
P
DSS
m
V
V
1
V
2I
g
For E-MOS; gm is defined from Shockley equation:
When V
GS= 0:
g
mdetermined at Q point: P
DSS
m0
V
2I
g 






P
GS
m0m
V
V
1gg
54

Transconductance g
m (E-MOSFET)
For JFET & DMOS, gm is defined from:
g
mdetermined at Q point:
55

Notes:
V
GSshould be positive for NMOS and negative for PMOS
g
m= 2k(V
GS–V
T)
AC equivalent circuit (EMOS)
56

3 types of MOSFET amplifier
57
CS –CD -CG

EMOS –CS with fixed bias voltage
58Cout
Vout
Vin
Cin
+
V1
10V
VDD
RG
RD
N-EMOS
Input at G terminal, output at D
terminal Common Source
Fixed biasing (S grounded)
To draw AC equivalent circuit
Short circuit all capacitors
Short circuit power supply
AC equivalent
circuit

Z
i= R
G
Z
o= r
d//R
D ≈ R
D if r
d> 10R
D
A
V= -g
m(r
D//R
D) ≈ -g
mR
Dif r
d> 10R
D
Input and output voltage are out of phase
EMOS –CS with fixed bias voltage
59

EMOS –CS with voltage divider
60
Input at G terminal, output at D
terminal Common Source
Voltage divider
S terminal is connected to Rs and Cs
in parralelG
D
S
C1
1uF
R1
Cs
RS
Cout
Vout
Vin
VDD
R2
RD
N-EMOS
AC equivalent
circuit

EMOS –CS with voltage divider
Z
i= R
1// R
2
Z
o= r
d//R
D ≈ R
D nếur
d> 10R
D
A
V= -g
m(r
D//R
D) ≈ g
mR
D nếur
d> 10R
D
Input and output voltage are out of phase
61

EMOS –CS with voltage divider and wo. Cs
62
Input at G terminal, output at D
terminal Common Source
Voltage divider
S terminal is connected to ONLY Rs
and REMOVE bypass-capacitor C
SG
D
S
C1
1uF
R1
Cs
RS
Cout
Vout
Vin
VDD
R2
RD
N-EMOS
AC equivalent
circuit
X
?????

EMOS –CS with voltage divider and wo. Cs
63
Input at G terminal, output at D
terminal Common Source
Voltage divider
S terminal is connected to ONLY Rs
and REMOVE bypass-capacitor C
SG
D
S
C1
1uF
R1
Cs
RS
Cout
Vout
Vin
VDD
R2
RD
N-EMOS
AC equivalent
circuit
X

EMOS –CS with voltage divider and wo. Cs
Z
i= R
G (or R1//R2)
Z
o= R
D/[1+g
mR
S+(R
D+R
S)/r
d]
A
V= -g
mR
D/[1+g
mR
S+(R
D+R
S)/r
d]
Input and output voltage are out of phase
64

EMOS –CS with feedback bias
Input at G terminal, output at D
terminal: Common Source
Feedback biasing
To draw AC equivalent circuit
Short circuit all capacitors
Short circuit power supply
65

EMOS –CS with feedback bias
66
AC equivalent circuit
Short circuit all capacitors
Short circuit power supply

EMOS –CS with feedback bias
Z
i=(R
F+r
d//R
D)/[1+g
m(r
d//R
D)]
≈ R
F/(1+g
mR
D)with r
d>10R
D, R
F>>r
d//R
D
Z
o= R
F//r
d//R
D ≈ R
D with r
d>10R
D, R
F>>r
d//R
D
A
V = g
mR
F//r
d//R
D≈ g
mR
Dwith r
d>10R
D, R
F>>r
d//R
D
Output and input voltage are out of phase
67

EMOS –CS with feedback bias
68

69
EMOS –CS with feedback bias

70
EMOS –CS with feedback bias

JFET –CD with fixed biasing
Input at G terminal, output at
S terminal: Common Drain
Fixed biasing
71

Z
i= R
G
Z
o= r
d//R
S//(1/g
m) ≈ R
S//(1/g
m) if r
d> 10R
S
A
V= -g
m(r
d//R
S)/[1+g
m(r
d//R
S)] ≈ g
mR
S/[1+g
mR
S)] if r
d> 10R
S
≈ 1 if g
mR
S>> 1
72
JFET –CD with fixed biasing

JFET –CG with fixed biasing
Input at S terminal, output at D terminal:
Common GATE
Fixed biasing
73

JFET –CG with fixed biasing
Z
i = R
s//[(r
d+R
D)/(1+g
mr
d)]≈ R
S//(1/g
m)nếu r
d>10R
D
Z
o = r
d//R
D ≈ R
D nếu r
d>10R
D
A
V = [g
mR
D+ (R
D/r
d)]/[1+ R
D/r
d] ≈ g
mR
D nếu r
d>10R
D
Input and output voltage are IN-PHASE
74

Equivalent circuit for DMOS
Similar to JFET and E-MOSFET
For DMOS:
V
GScan be positive for Nchannel and negative for P channel
g
mcan be higher than g
m0
76

Resume
77

Resume
78

Exercises
Chapter 5: 3, 5, 6, 9, 26, 34, 37
Chapter 6: 1, 6, 12, 17, 19, 21, 23
Chapter 9: 1, 5, 12, 17, 19, 23, 27, 32, 33, 37, 38,
43, 44
79
Tags