CHAPTER 3:
TRANSISTOR MOSFET
DR. PHAM NGUYENTHANHLOAN
Hà Nội, 9/24/2012
1
Chapter 3: MOSFET
Introduction
Classifications
JFET
D-FET (Depletion MOS)
MOSFET (Enhancement E-FET)
DC biasing
Small signal analysis
Equivalent small signal circuit
2
FET Introduction
High input impedance, nMΩ-n100MΩ
Controlled by voltage (≠ BJT)
Low power consumption
Low noise, suitable for small signal
Low impact of temperature
Using as switch for low power application
Small size and adapt for integrated circuit
3
Classification
JFET-Junction Field Effect Transistor
N and P channels
MOSFET-Metal Oxide Semiconductor FET
Depletion MOS
N and P channels
Enhancement MOS
N and P channels
4
JFET
Structure and Operation
Characteristic Curve
Compare with BJT
Examples, datasheets
6
JFET –Structure
7
JFET –Operation
V
GS = 0, V
DS>0 increase gradually, I
Dincreases and then saturates
8
JFET –Operation
V
GS = 0, V
DS = V
P, I
D= I
DSS
V
P: pinch off voltage (pinch-off)
I
D = I
DSS(1 -V
GS/V
P)
2
9
JFET –Operation
V
GS < 0, V
DS > 0, Saturation current reduces when V
GS V
pinch-off
V
GS= V
P, I
D= 0
10
JFET –Characteristic Curves
I
D= f(V
GS) Shockley equation:
I
G ≈ 0A (gate current)
I
D = I
S (I
D drain current, I
Ssource current)
11
I
D = I
DSS(1 -V
GS/V
P)
2
JFET –Characteristic Curves
P-channel, I
DSS = 6mA, V
P = 6V
N-channel, I
DSS = 8mA, V
P = -4V
12
JFET –Symbol
13
JFET
2N5457
14
Datasheet-2N5457
Rating Symbol ValueUnit
Drain-Source voltage V
DS 25 Vdc
Drain-Gate voltage V
DG 25 Vdc
Reverse G-S voltage V
GSR -25 Vdc
Gate current I
G 10 nAdc
Device dissipation 25
0
C
Derate above 25
0
C
P
D 310
2.82
mW
mW/
0
C
Junction temp range T
J 125
0
C
Storage channel temp rangeT
stg -60 to
+150
0
C
15
Datasheet-2N5457-characteristics
Characteristic SymbolMinTypMaxUnit
V
G-S breakdown V
(BR)GSS-25 Vdc
I
gate reverse(Vgs=-15, Vds=0)I
GSS -1.0nAdc
V
G-S cutoff V
GS(off)-0.5 -1.0Vdc
V
G-S V
GS -2.5-6.0Vdc
I
D-zero gate volage I
DSS 1.03.05.0mAdc
C
in C
iss 4.57.0pF
C
reverse transfer C
rss 1.53.0pF
16
MOSFET –Operation
N-channel EMOS
V
GS > V
TH, V
DS > 0
N-channel DMOS
V
GS = 0, V
DS > 0
19
DMOS–Transfer characteristic curves
Similar to JFET, transfer characteristic curve I
D= f(V
GS)
follows Shockley equation: I
D= I
DSS(1 -V
GS/V
P)
2
Can work at: V
GS> 0, I
D> 0
20
EMOS–Transfer characteristic curve
Transfer characteristic curve:
I
D= k(V
GS–V
T)
2
with V
T > 0 (for NMOS) and Vt< 0 for PMOS)
When V
GS< V
T, I
D= 0
21
Datasheet-2N4351-EMOS
Characteristic SymbolMinMax Unit
V
DS breakdown V
(BR)DSX25 Vdc
I
D-zero gate volage,
Vds=10V,Vgs=0, 25C –150C
I
DSS 10
10
nAdc
µAdc
I
gate reverse(Vgs=+-15, Vds=0) I
GSS +-10nAdc
V
DS on Voltage V
DS(on) 1.0 V
C
in(Vds=10V,Id=2mA,f=140kHz) C
iss 5.0 pF
C
DS(Vdsub=10V,f=140KHz) C
rss 5.0 pF
R
DS(Vgs=10V,Id=0,f=1KHz) R
ds(on) 300ohms
26
VMOS
VMOS –Vertical MOSFET, increase channel lenght
Increase drain current thanks to large space of heat release
High switching speed
27
CMOS
CMOS=Complementary MOSFET
pMOS và nMOS: fabricated on same wafer
Reduce size and power consumption, increase switching speed
Analog/Digital IC design
28
Some noted
With all kinds of FET:
I
G= 0A
I
D= I
S
For JFET& D-MOSFET:
I
D= I
DSS(1 –V
GS/V
P)
2
For E-MOSFET(MOSFET):
I
D= k(V
GS–V
T)
2
(saturation mode)
Determine Q-point (DC operating point) and DC load line
31
Fix biasing (ex: JFET)
I
G= 0A
V
S= 0
V
GS= V
G= -V
GG
I
D = I
DSS(1-V
GS/V
p)
2
V
Gis fixed at V
GG
32
Fix biasing
I
D = I
DSS(1-V
GS/V
P)
2
Build transfer characteristic
curve from this table:
V
GS I
D
0 I
DSS
0.3V
P I
DSS/2
0.5Vp I
DSS/4
V
P 0mA
DC load line:
V
GS= -V
GG
Intersection between DC load
line and trans. Charact. Curve
Q point
33
Temperature effect
Leakage current I
GSSincreases
when t0 increases cannot
neglect RGat mentioned
previouslyso:
Q will move from :
V
GS= V
GG+ I
GSS*R
G
new Q-point
34
Impact of temperature
Question: If V
GG=-1V& R
G=1 MΩ. I
GSS=1nA at 25°C and increase
double when temperature increases 10
o
C. Determine V
GSat 125
o
C ?
35
new Q-point
Answer:
At 25
o
C, I
GSS×R
G=10
-9
×10
6
= 1mV, can
be neglected when compare with V
GG= -
1V (or new V
GS= -999mV).
Q point at 125
0
C is shifted to a new
point and it is far from the initial Q
point at room temperature
36
Question: If V
GG=-1V& R
G=1 MΩ.
I
GSS=1nA at 25°C and increase double when
temperature increases 10
o
C. Determine V
GS
at 125
o
C ?
When Temp. increases to 125
o
C, current
I
GSSincreases to 2
10
times ( ≈10
3
)
I
GSS= 10
3
×1nA =1µA
I
GSS×R
G=1µA* 1MOhm = 1V
New Q point: V
GS= 0V & I
D = I
DSS
Impact of temperature
Self biasing
What is the main difference compared to fixed biasing?
Role of R
S?
Remove R
Gto reduce impact of temperature?
38
Self-biasing
Loop at input:
I
G= 0 => V
G= 0V V
GS= -I
SR
S (1)
I
D = I
DSS(1-V
GS/V
p)
2
(2)
To determine Q point:
Sole the equation system: (1) + (2)
Or by using curve method as
shown in the paragraph (intersection
point)
Consider the impact of Temp.?
39
Voltage divider biasing (ex: JFET)
I
G= 0, output current I
D is controlled by V
GS
This biasing method is usually used for FET
40
Voltage divider biasing (ex: JFET)
V
G = V
DDR
2/(R
1+R
2)
DC load line is: V
GS = V
G-I
DR
S(1)
R
Svaries shift of Q point and DC
load line
Characteristic curve of FET
I
D = I
DSS(1-V
GS/V
P)
2
, (2)
To determine Q point:
Sole the equation system: (1)+(2)
Or by using curve method as
shown in the paragraph (intersection
point)
41
V
G= V
DD* 10MΩ/(110MΩ+10MΩ)
DC load line: V
GS= V
G–I
S*750Ω(1)
I
Dcurrent of DMOS:
I
D = I
DSS(1-V
GS/V
P)
2
(2)
To determine Q point:
Sole the equation system: (1) +
(2)
Or by using curve method as
shown in the paragraph (intersection
point)
42
Voltage divider biasing (ex: DMOSFET)
With DMOS: I
D = I
DSS(1-V
GS/V
P)
2
V
GScan be positive
43
Voltage divider biasing (ex: DMOSFET)
With EMOS:
I
D = k(V
GS-V
T)
2
k=I
Don/(V
GSon-V
T)
2
44
Voltage divider biasing (E-MOSFET)
With EMOS: I
D = k(V
GS-V
T)
2
where k = I
D-on/(V
GSon-V
T)
2
Draw transfer characteristic
curve of E-MOSFET
45
Voltage divider biasing (ex: E-MOSFET)
Feedback biasing (ex: E-MOSFET)
At the node G:
I
G= 0 V
G= V
D
46
At the node G: I
G= 0 => V
G=
V
D
DC load line
V
GS= V
DS= V
DD -R
DI
D (1)
Transfer char. equation:
I
D = k(V
GS -V
T)
2
, (2)
k = I
Don/(V
GSon-V
T)
2
Solve equ. Sys. (1,2) or use
paragraph method
47
Feedback biasing (ex: E-MOSFET)
Example
Question: Determine Q (I
D, V
GS) point Q of these circuits?
48
Example
49
Question: Determine Q (I
D, V
GS) point Q of these circuits?
Example
50
Question:DetermineV
GSand
V
DSfortheE-MOSFETcircuit
above.Giventhatthis
MOSFEThasminimumvalues
ofI
D(on)=200mAatV
GS=4V
andV
th=2V.
Question:DetermineI
Dwith
V
th=3V.
Analyze the circuit for AC signal
(small signal)
51
Small signal model
52
Transconductance
g
m= ∆I
D/ ∆V
GS= d(I
D(V
GS))
Derivation of current I
Das
function of V
GS
Slope of I
D(V
GS) at Q point
53
Transconductance g
m (JFET & DMOS)
P
GS
P
DSS
m
V
V
1
V
2I
g
For E-MOS; gm is defined from Shockley equation:
When V
GS= 0:
g
mdetermined at Q point: P
DSS
m0
V
2I
g
P
GS
m0m
V
V
1gg
54
Transconductance g
m (E-MOSFET)
For JFET & DMOS, gm is defined from:
g
mdetermined at Q point:
55
Notes:
V
GSshould be positive for NMOS and negative for PMOS
g
m= 2k(V
GS–V
T)
AC equivalent circuit (EMOS)
56
3 types of MOSFET amplifier
57
CS –CD -CG
EMOS –CS with fixed bias voltage
58Cout
Vout
Vin
Cin
+
V1
10V
VDD
RG
RD
N-EMOS
Input at G terminal, output at D
terminal Common Source
Fixed biasing (S grounded)
To draw AC equivalent circuit
Short circuit all capacitors
Short circuit power supply
AC equivalent
circuit
Z
i= R
G
Z
o= r
d//R
D ≈ R
D if r
d> 10R
D
A
V= -g
m(r
D//R
D) ≈ -g
mR
Dif r
d> 10R
D
Input and output voltage are out of phase
EMOS –CS with fixed bias voltage
59
EMOS –CS with voltage divider
60
Input at G terminal, output at D
terminal Common Source
Voltage divider
S terminal is connected to Rs and Cs
in parralelG
D
S
C1
1uF
R1
Cs
RS
Cout
Vout
Vin
VDD
R2
RD
N-EMOS
AC equivalent
circuit
EMOS –CS with voltage divider
Z
i= R
1// R
2
Z
o= r
d//R
D ≈ R
D nếur
d> 10R
D
A
V= -g
m(r
D//R
D) ≈ g
mR
D nếur
d> 10R
D
Input and output voltage are out of phase
61
EMOS –CS with voltage divider and wo. Cs
62
Input at G terminal, output at D
terminal Common Source
Voltage divider
S terminal is connected to ONLY Rs
and REMOVE bypass-capacitor C
SG
D
S
C1
1uF
R1
Cs
RS
Cout
Vout
Vin
VDD
R2
RD
N-EMOS
AC equivalent
circuit
X
?????
EMOS –CS with voltage divider and wo. Cs
63
Input at G terminal, output at D
terminal Common Source
Voltage divider
S terminal is connected to ONLY Rs
and REMOVE bypass-capacitor C
SG
D
S
C1
1uF
R1
Cs
RS
Cout
Vout
Vin
VDD
R2
RD
N-EMOS
AC equivalent
circuit
X
EMOS –CS with voltage divider and wo. Cs
Z
i= R
G (or R1//R2)
Z
o= R
D/[1+g
mR
S+(R
D+R
S)/r
d]
A
V= -g
mR
D/[1+g
mR
S+(R
D+R
S)/r
d]
Input and output voltage are out of phase
64
EMOS –CS with feedback bias
Input at G terminal, output at D
terminal: Common Source
Feedback biasing
To draw AC equivalent circuit
Short circuit all capacitors
Short circuit power supply
65
EMOS –CS with feedback bias
66
AC equivalent circuit
Short circuit all capacitors
Short circuit power supply
EMOS –CS with feedback bias
Z
i=(R
F+r
d//R
D)/[1+g
m(r
d//R
D)]
≈ R
F/(1+g
mR
D)with r
d>10R
D, R
F>>r
d//R
D
Z
o= R
F//r
d//R
D ≈ R
D with r
d>10R
D, R
F>>r
d//R
D
A
V = g
mR
F//r
d//R
D≈ g
mR
Dwith r
d>10R
D, R
F>>r
d//R
D
Output and input voltage are out of phase
67
EMOS –CS with feedback bias
68
69
EMOS –CS with feedback bias
70
EMOS –CS with feedback bias
JFET –CD with fixed biasing
Input at G terminal, output at
S terminal: Common Drain
Fixed biasing
71
Z
i= R
G
Z
o= r
d//R
S//(1/g
m) ≈ R
S//(1/g
m) if r
d> 10R
S
A
V= -g
m(r
d//R
S)/[1+g
m(r
d//R
S)] ≈ g
mR
S/[1+g
mR
S)] if r
d> 10R
S
≈ 1 if g
mR
S>> 1
72
JFET –CD with fixed biasing
JFET –CG with fixed biasing
Input at S terminal, output at D terminal:
Common GATE
Fixed biasing
73
JFET –CG with fixed biasing
Z
i = R
s//[(r
d+R
D)/(1+g
mr
d)]≈ R
S//(1/g
m)nếu r
d>10R
D
Z
o = r
d//R
D ≈ R
D nếu r
d>10R
D
A
V = [g
mR
D+ (R
D/r
d)]/[1+ R
D/r
d] ≈ g
mR
D nếu r
d>10R
D
Input and output voltage are IN-PHASE
74
Equivalent circuit for DMOS
Similar to JFET and E-MOSFET
For DMOS:
V
GScan be positive for Nchannel and negative for P channel
g
mcan be higher than g
m0
76