differential equations engineering mathematics

ADITYAMOTLA1 69 views 102 slides May 08, 2024
Slide 1
Slide 1 of 102
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102

About This Presentation

Engineering Mathematics for GATE


Slide Content

DifferentialEquations
Differential
Equations
DifferentialEquations

DifferentialEquations
❖Teaching Experience: 10+ Years
❖Qualification: M.Tech from NIT Bhopal
❖Achievements:
▪Cracked GATE Many Times with Good GATE Score & rank
▪Written Many Research and Review Papers
❖Area of Expertise:
▪Strength of Materials, Theory of Machines, Machine Design,
Industrial Engineering & Production.
DHEERAJ SARDANA
ABOUT ME

DifferentialEquations

DifferentialEquations

DifferentialEquations
Find Link in the Description.

DifferentialEquations
Find Link in the Description.

DifferentialEquations

DifferentialEquations
Join My Telegram Group
https://t.me/dheeraj_sardana
✓For daily dose to improve concepts
✓For daily important questions
✓For latest information about exams
✓For notification of the class
✓For important PDFs & notes
✓For clearing the doubts by experts
DHEERAJ
SARDANA

DifferentialEquations

DifferentialEquations
Find Link in the Description.

DifferentialEquations
Order & degree of Differential equation:
The order of highest ordered derivative occurring in D. E. is
known as Order of D.E
Degree of a D.E. is highest ordered derivative occurring in it
when derivatives are free from fractional powers.

DifferentialEquations

DifferentialEquations
Q. The partial differential equation
�
2

��
2
+
�
2

��
2
+
�∅
��
+
�∅
��
=0 has
(a)Degree 1 order 2 (b) degree 1 order 1
(c) Degree 2 order 1 (d) degree 2 order 2

DifferentialEquations
Solution of Ordinary Differential Equations
First Method
Variable separable
(I)
��
��
=
��
��
→�����??????�� �� � ����
→�����??????�� �� � ����
or
��
��
=��∙��

DifferentialEquations
Q. The solution of the differential
equation
��
��
+�
2
=0 is
(a) y=
1
�+�
(b) �=
−�
3
3
+�
(c) c�
�
(d) Unsolvable as equation is non-linear

DifferentialEquations

DifferentialEquations
Solution of Ordinary Differential Equations
(II)
��
��
=���+��+�

DifferentialEquations
Q.
��
��
=�+�+1
2

DifferentialEquations

DifferentialEquations
Q.
�??????
�??????
− 2??????=0 is applicable over −10<&#3627408481;<10
if ??????4=10 then ??????−5 is

DifferentialEquations

DifferentialEquations
Q. for D.E.
&#3627408465;&#3627408486;
&#3627408465;??????
+5&#3627408481;=0 &#3627408486;0=1 find solution.
A. &#3627408466;
5??????
B. &#3627408466;
−5??????
C. 5&#3627408466;
−5??????
D. &#3627408466;
−5??????

DifferentialEquations

DifferentialEquations
Q. If at every point of a certain curve the slope of the
tangent
−2&#3627408485;
&#3627408486;
the curve is
A. straight line
B. parabola
C. circle
D. ellipse

DifferentialEquations

DifferentialEquations
Q. Solution of first order D.E.
ሶ&#3627408485;&#3627408481;=−3&#3627408485;&#3627408481; &#3627408485;0=&#3627408485;
0 is
A. &#3627408485;&#3627408481;=&#3627408485;
0 &#3627408466;
−3??????
B. &#3627408485;&#3627408481;=&#3627408485;
0 &#3627408466;
−3
C. &#3627408485;&#3627408481;=&#3627408485;
0 &#3627408466;
−??????/3
D. &#3627408485;&#3627408481;=&#3627408485;
0 &#3627408466;
−??????

DifferentialEquations

DifferentialEquations
Q. The solution of
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
=&#3627408486;
2
with initial value &#3627408486;0=1
bounded in this interval is
A. −∞≤&#3627408485;≤∞
B. −∞≤&#3627408485;≤1
C. &#3627408485;<1,&#3627408485;>1
D. −2≤&#3627408485;≤2

DifferentialEquations

DifferentialEquations
Q. The solution of differential equation
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
−&#3627408486;
2
=1
satisfying condition &#3627408486;0=1 is
A. &#3627408486;=&#3627408466;
&#3627408485;
2
B. &#3627408486;=cot&#3627408485;+
??????
4
C. &#3627408486;=&#3627408485;
D. &#3627408486;=tan&#3627408485;+
??????
4

DifferentialEquations

DifferentialEquations
Q. Match the following
P:
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
=
&#3627408486;
&#3627408485;
Q:
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
=−
&#3627408486;
&#3627408485;
R:
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
=
&#3627408485;
&#3627408486;
S:
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
=−
&#3627408485;
&#3627408486;
(1) Circle
(2) St. line
(3) Hyperbola

DifferentialEquations

DifferentialEquations
Q. The general solution of
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
=cos&#3627408485;+&#3627408486; with &#3627408464; as
constant
A. &#3627408486;+sin(&#3627408485;+&#3627408486;)
B. cos
&#3627408485;+&#3627408486;
2
=&#3627408485;+&#3627408464;
C. tan
&#3627408485;+&#3627408486;
2
=&#3627408486;+&#3627408464;
D. tan
&#3627408485;+&#3627408486;
2
=&#3627408485;+&#3627408464;

DifferentialEquations

DifferentialEquations
Q. Which one of the following is the general solution
of 1
st
order D.E.
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
=&#3627408485;+&#3627408486;−1
2
; &#3627408485; & &#3627408486; are real
A. &#3627408486;=1+&#3627408485;+tan
−1
(&#3627408485;+&#3627408464;) &#3627408464; is constant
B. &#3627408486;=1+&#3627408485;+tan&#3627408485;+&#3627408464; &#3627408464; is constant
C. &#3627408486;=1−&#3627408485;+tan
−1
&#3627408485;+&#3627408464; &#3627408464; is constant
D. &#3627408486;=1−&#3627408485;+tan&#3627408485;+&#3627408464; &#3627408464; is constant

DifferentialEquations

DifferentialEquations
Linear Differential EQN
(I)
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+ &#3627408451;
&#3627408486;=&#3627408452; &#3627408451; & &#3627408452; = FNS of &#3627408485; only

DifferentialEquations

DifferentialEquations
Linear Differential EQN
(II)
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+ &#3627408451;
&#3627408485;=&#3627408452; &#3627408451; & &#3627408452; = FNS of &#3627408486; only

DifferentialEquations

DifferentialEquations
Q. If &#3627408485;
2

&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+2&#3627408485;&#3627408486;=
2ln&#3627408485;
&#3627408485;
&#3627408486;1=0 find &#3627408486;(&#3627408466;)
A. &#3627408466;
B. 1
C. 1/&#3627408466;
D. 1/&#3627408466;
2

DifferentialEquations

DifferentialEquations
Q.
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+2&#3627408485;&#3627408486;=&#3627408466;
−&#3627408485;
2
with &#3627408486;0=1
A.1+&#3627408485;&#3627408466;
&#3627408485;
2
B.1+&#3627408485;&#3627408466;
−&#3627408485;
2
C.1−&#3627408485;&#3627408466;
&#3627408485;
2
D.1−&#3627408485; &#3627408466;
−&#3627408485;2

DifferentialEquations

DifferentialEquations
Q. The solution of the differential equation
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+2&#3627408485;&#3627408486;=&#3627408466;
(−&#3627408485;
2
)
with y(0) = 1 is
(a) (1 + x) &#3627408466;
(+&#3627408485;
2
)
(b) (1 + x) &#3627408466;
(−&#3627408485;
2
)
(c) (1 - x) &#3627408466;
(+&#3627408485;
2
)
(d (1 - x) &#3627408466;
(−&#3627408485;
2
)

DifferentialEquations

DifferentialEquations
Q. &#3627408485;.
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+&#3627408486;=&#3627408485;
4
&#3627408486;1=
6
5
A. &#3627408486;=
&#3627408485;
4
5
+
1
&#3627408485;
B. &#3627408486;=
4&#3627408485;
4
5
+
4
5&#3627408485;
C. &#3627408486;=
&#3627408485;
4
5
+1
D. &#3627408486;=
&#3627408485;
5
5
+1

DifferentialEquations

DifferentialEquations
Homogeneous Differential Equations :-
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
=
&#3627408467;(&#3627408485;,&#3627408486;)
&#3627408468;&#3627408485;,&#3627408486;
→both are homogeneous
→function
&#3627408467;&#3627408485;,&#3627408486;=&#3627408485;
3
+&#3627408486;
3
+&#3627408485;
2
&#3627408486;→ power of each term
is same
Condition
&#3627408467;&#3627408472;&#3627408485;,&#3627408472;&#3627408486;=&#3627408472;
&#3627408475;
&#3627408467;&#3627408485;,&#3627408486;⇒ Homogeneous
&#3627408467;&#3627408472;&#3627408485;,&#3627408472;&#3627408486;≠&#3627408472;
&#3627408475;
&#3627408467;&#3627408485;,&#3627408486;⇒ Non-Homogeneous

DifferentialEquations

DifferentialEquations
Q. A curve passing through a point1,
??????
6
Let the
slope of curve at each point (&#3627408485;,&#3627408486;) be
&#3627408486;
&#3627408485;
+sec
&#3627408486;
&#3627408485;
.
Then eqn. of curve &#3627408485;>0
A. sin
&#3627408486;
&#3627408485;
=ln&#3627408485;+
1
2
B. cos
&#3627408486;
&#3627408485;
=log&#3627408485;+
1
2
C. sin
2&#3627408486;
&#3627408485;
=log&#3627408485;+2
D. cos
2&#3627408486;
&#3627408485;
=log&#3627408485;+
1
2

DifferentialEquations

DifferentialEquations
Second order linear diff. Eqn :
&#3627408465;
&#3627408475;
&#3627408486;
&#3627408465;&#3627408485;
&#3627408475;
+
&#3627408451;&#3627408465;
&#3627408475;−1
&#3627408486;
&#3627408465;&#3627408485;
&#3627408475;−1
+
&#3627408452;&#3627408465;
&#3627408475;−2
&#3627408486;
&#3627408465;&#3627408485;
&#3627408475;−2
+⋯+&#3627408481;&#3627408486;=&#3627408453;&#3627408485;
&#3627408451; & &#3627408452; are constant
for second order &#3627408475;=2
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2
+
&#3627408451;&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+&#3627408452;&#3627408486;=&#3627408453;&#3627408485;

DifferentialEquations

DifferentialEquations
Homogeneous linear DE
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2
+
&#3627408451;&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+&#3627408452;
&#3627408486;=0
&#3627408451; & &#3627408452; are constant

DifferentialEquations

DifferentialEquations
Q.
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2
−5
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+6=0

DifferentialEquations

DifferentialEquations
Case 2 :
If roots are real & equal
C.F. = &#3627408464;
1+&#3627408464;
2&#3627408485; &#3627408466;
??????&#3627408485;
four roots are equal
&#3627408438;.??????.=&#3627408464;
1+&#3627408464;
2&#3627408485;+&#3627408464;
3&#3627408485;
2
+&#3627408464;
4&#3627408485;
3
&#3627408466;
??????&#3627408485;

DifferentialEquations

DifferentialEquations
Case 3 :
If roots are complex
&#3627408487;=&#3627408462;±??????&#3627408463;
&#3627408486;=&#3627408438;.??????.=&#3627408466;
&#3627408462;&#3627408485;
&#3627408464;
1cos&#3627408463;&#3627408485;+&#3627408464;
2sin&#3627408463;&#3627408485;

DifferentialEquations

DifferentialEquations
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2
+
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+&#3627408486;=0

DifferentialEquations

DifferentialEquations
Q. Given an ordinary D.E.
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2
+
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
−6&#3627408486;=0 &#3627408486;0=0
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
0=1
Find value of &#3627408486;(1) :

DifferentialEquations

DifferentialEquations
Q. The maximum value of solution &#3627408486;&#3627408481; of D.E.
&#3627408486;&#3627408481;+&#3627408486;″(&#3627408481;)=0 with initial condition &#3627408486;

0=1
& &#3627408486;0=1 for &#3627408481;≥0 is
A. 1
B. 2
C. ??????
D.2

DifferentialEquations

DifferentialEquations
Q. A function &#3627408475;(&#3627408485;) ssatisfies the differential eqn
&#3627408465;
2
&#3627408475;&#3627408485;
&#3627408465;&#3627408485;
2

&#3627408475;&#3627408485;
??????
2
=0 where &#3627408447; is a constant
The boundary conditions are &#3627408475;0=&#3627408446; & &#3627408475;∞=0
The soln to eqn is -
A. &#3627408475;&#3627408485;=−&#3627408446; &#3627408466;
−&#3627408485;/??????
B. &#3627408475;&#3627408485;=&#3627408446; &#3627408466;
−&#3627408485;/??????
C. &#3627408475;&#3627408485;=&#3627408446; &#3627408466;
−&#3627408485;/??????
D. &#3627408475;&#3627408485;=&#3627408446;
2
&#3627408466;
−&#3627408485;/??????

DifferentialEquations

DifferentialEquations
Particular Integral :
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2
+
&#3627408451;&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+&#3627408452;=&#3627408453;&#3627408485;
&#3627408453;(&#3627408485;) is a function of &#3627408485; only
→&#3627408453;&#3627408485;=&#3627408466;
&#3627408462;&#3627408485;+&#3627408463;
→ &#3627408453;&#3627408485;=&#3627408485;
&#3627408474;
→ &#3627408453;&#3627408485;=sin(&#3627408462;&#3627408485;+&#3627408463;) or cos(&#3627408462;&#3627408485;+&#3627408463;)

DifferentialEquations

DifferentialEquations
Case 1:
&#3627408453;&#3627408485;=&#3627408466;
&#3627408462;&#3627408485;+&#3627408463;
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2
+
2&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+6&#3627408486;=&#3627408466;
2&#3627408485;+1

DifferentialEquations

DifferentialEquations
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2

2&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+&#3627408486;=&#3627408466;
&#3627408485;

DifferentialEquations

DifferentialEquations
Case 2:
&#3627408453;&#3627408485;=sin(&#3627408462;&#3627408485;+&#3627408463;)
or
cos(&#3627408462;&#3627408485;+&#3627408463;)
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2
+
2&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+&#3627408486;=sin2&#3627408485;+1 or cos(2&#3627408485;+1)

DifferentialEquations

DifferentialEquations
Case 3:
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2
+
&#3627408451;&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+&#3627408452;&#3627408486;=&#3627408485;
&#3627408474;
→ algebraic function
&#3627408439;
2
&#3627408486;+&#3627408451; &#3627408439;&#3627408486;+&#3627408452;&#3627408486;=&#3627408485;
&#3627408474;

DifferentialEquations

DifferentialEquations
Q. The solution of D.E.
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2
+
6&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+9&#3627408486;=9&#3627408485;+6
&#3627408464;
1 & &#3627408464;
2 = constants
A.&#3627408464;
1&#3627408485;+&#3627408464;
2 &#3627408466;
−3&#3627408485;
B.&#3627408464;
1&#3627408485;+&#3627408464;
2&#3627408466;
−3&#3627408485;
+&#3627408485;
C. &#3627408464;
1 &#3627408466;
3&#3627408485;
+&#3627408464;
2 &#3627408466;
−3&#3627408485;
D.&#3627408464;
1&#3627408485;+&#3627408464;
2&#3627408466;
3&#3627408485;
+&#3627408485;

DifferentialEquations

DifferentialEquations

DifferentialEquations

DifferentialEquations
Given that ሷ&#3627408485;+3&#3627408485;=0,&#3627408462;&#3627408475;&#3627408465; &#3627408485;0=1,ሶ&#3627408485;0=0, what is
x(1)?
(a)-0.99 (b) -0.16
(c) 0.16 (d) 0.99

DifferentialEquations

DifferentialEquations
Q. Consider the differential equation
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
=1+&#3627408486;
2
&#3627408485;. The
general solution with constant c is
(a)y=tan
&#3627408485;
2
2
+tan&#3627408464; (b) &#3627408486;=&#3627408481;&#3627408462;&#3627408475;
2
&#3627408485;
2
+&#3627408464;
(c) &#3627408486;=&#3627408481;&#3627408462;&#3627408475;
2
&#3627408485;
2
+c (d) y=tan
&#3627408485;
2
2
+&#3627408464;

DifferentialEquations

DifferentialEquations
Consider the differential equation &#3627408485;
2
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2
+&#3627408485;
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
−4&#3627408486;=0
with the boundary conditions of y(0) = 0 and y(1) = 1
The complete solution of the differential equation is
(a)&#3627408485;
2
(b) sin
??????&#3627408485;
2

(c) &#3627408466;
&#3627408485;
sin
??????&#3627408485;
2
(d) &#3627408466;
−&#3627408485;
sin
??????&#3627408485;
2

DifferentialEquations

DifferentialEquations
Find the solution of
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2
=&#3627408486; which passes
through the origin and the point (ln2,
3
4
)
(a)&#3627408486;=
1
2
&#3627408466;
&#3627408485;
- &#3627408466;
−&#3627408485;
(b)&#3627408486;=
1
2
(&#3627408466;
&#3627408485;
+&#3627408466;
−&#3627408485;
)
(c)&#3627408486;=
1
2
(&#3627408466;
&#3627408485;
−&#3627408466;
−&#3627408485;
)
(d)&#3627408486;=
1
2
&#3627408466;
&#3627408485;
+&#3627408466;
−&#3627408485;

DifferentialEquations

DifferentialEquations
For the equation,
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+7&#3627408485;
2
&#3627408486;=0, if y(0)=
3
7
, then the
value of y(1) is
(a)
3
7
&#3627408466;

7
3 (b)
7
3
&#3627408466;

7
3
(c)
3
7
&#3627408466;

3
7 (d)
7
3
&#3627408466;

3
7

DifferentialEquations

DifferentialEquations
The differential equation
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+4&#3627408486;=5 is valid in
the domain 0≤&#3627408485;≤1 with y(0) =2.25. Then
solution of differential equation is
(a)&#3627408486;= &#3627408466;
−4&#3627408485;
+1.25
(b)&#3627408486;= &#3627408466;
−4&#3627408485;
+5
(c)&#3627408486;= &#3627408466;
4&#3627408485;
+5
(d)&#3627408486;= &#3627408466;
4&#3627408485;
+1.25

DifferentialEquations

DifferentialEquations
A differential equation is given as
&#3627408485;
2
&#3627408465;
2
&#3627408486;
&#3627408465;&#3627408485;
2
−2&#3627408485;
&#3627408465;&#3627408486;
&#3627408465;&#3627408485;
+2&#3627408486;=4
The solution of differential equation in terms
of arbitrary constant &#3627408438;
1 &#3627408462;&#3627408475;&#3627408465; &#3627408438;
2 is
(a)&#3627408486;=
??????1
&#3627408485;
2
+ &#3627408438;
2x +2
(b)&#3627408486;=&#3627408438;
1&#3627408485;
2
+ &#3627408438;
2x +4
(c)&#3627408486;=&#3627408438;
1&#3627408485;
2
+ &#3627408438;
2x +2
(d)&#3627408486;=
??????1
&#3627408485;
2
+ &#3627408438;
2x +4

DifferentialEquations

DifferentialEquations

DifferentialEquations
Join My Telegram Group
https://t.me/dheeraj_sardana
✓For daily dose to improve concepts
✓For daily important questions
✓For latest information about exams
✓For notification of the class
✓For important PDFs & notes
✓For clearing the doubts by experts
DHEERAJ
SARDANA

DifferentialEquations
Tags