differentiation assignment.pdf for class 11th

10,650 views 26 slides May 03, 2024
Slide 1
Slide 1 of 26
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26

About This Presentation

Physics


Slide Content

Find
dy
dx
of the given functions
1.y = x
n + 2
, where n is constant
2.y = x
3
3.y = x
–n
, where n is constant
4.y = x
–4
5.
1
n
y = x , where n is constant and n0z
6.
1
2
y = x
7.
2
3
y = x
"
8.
y = ax
3
, where a is a constant
9.
1
4
1
y = x
2
Lakshya Educare
Differentiate with respect to x
a x
2
b x
4
c x d x
9
e x
−3
f x
−1

g 4x
2
h 7x i 2x
5
j 3 k 8x
−2
l11x
−4
11 (x
7/2
)
dx
d
is equal to
(1)x
−5/2
2
7
(2)x
5/2
2
7

2
(3)
7
x
5/2
(4)x
5/2
7
2
12 ⎟


⎝x
3
1
dx
d⎛⎞
is equal to
(1)
x
4
−3
(2)
3
x
2
(3)
3
x
2
− (4) 3x
2
1
dx
d
(x
3/2
) is :
(1)
2
3
x
1/2
(2)
2
3
x
5/2
(3)
2
3
x
7/2
(4)
2
3
x
9/2
14 ⎟







x
1
dx
d
(1)
x2
1
(2) x (3)–
2x
3/2
1
(4)
2x
3/2
1
15The value of
dy
for y = 5x will be -
dx
(A) 5 (B)
2
5x
2
(C) zero (D) 10x
2
16
dx
d
(πx
2
) is equal to
(1) 2πx (2)πx (3) 2x (4)
2
πx
%$6,&0$7+6/'$3
PHYSICS
Turtle Tutorials - BM 1
Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com

1. If y = x
3
+ 2x
2
+ 7x + 8 then
dx
dy
will be -
(A) 3x
2
+ 2x + 15 (B) 3x
2
+ 4x+7 (C) x
3
+ 2x
2
+ 15(D)x
3
+ 4x + 7
2.
If y = x
2
sin x , then
dx
dy
will be -
(A) x
2
cos x + 2x sin x
(B) 2x sin x (C) x
2
cos x
(D) 2 x cos x
3. If y = e
x
. cot x then
dx
dy
will be
(A) e
x
cot x – cosec
2
x (B) e
x
cosec
2
x (C) e
x
[cot x – cosec
2
x]
(D) e
x
cot x
dx
dy
will be4. If y = x nx then
(A) nx + x (B) 1 + n x (C)nx (D) 1
dx
dy
5. y = 4 + 5x + 7x
3
. Find
(A) 5 - 21x
2
(B) 5 + 21x
2
(C) 9 + 7x
2
(D) 5 + 21x
x
3
1
x
1
Find
dx
dy
6. y = x +x
2
. +
(A)1 + 2x –
x
42
3
x
1
(B) 1 + 2x –
4
2
x
(C) 1 – 2x –
4
3
x
(D) 1 + 2x –
3
3
x
7. If f(x) =
x2
x2
The value f (–1) is
(A)
3
1
(B)
3
1
(C)3 (D) –3
8. y = x
2
+
x
1
2
.Find
dx
dy
(A) 2x –
x
3
2
(B)2x –
4
2
x
(C)2x +
x
3
2
(D) None of these
2
x
1
2
x
1
2
x
1
%$6,&0$7+6/'$
Lakshya Educare
PHYSICS
Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com

)x(tan
dx
d
is equal to
(1) sec
2
x (2)cotx
(3)– sec
2
x (4)– cot x
1
dx
d
(x
3
+ 4x
2
+ 1) is equal to
(1) cxx
3
4
4
x
3
4
+++ (2)3x
2
+ 8x
(3)
4
x
4
+ 8x (4) 3x
2
+
4
x
4
x
3
11 ⎟





+++ xtanxlog
x
1
x
dx
d

(1) 1 –
2
x
1
+ sec
2
x
(2) 1 +
x
1
+ sec
2
x
(3) 1 +
2
x
1
+
x
1
+ sec
2
x
(4) 1 –
2
x
1
+
x
1
+ sec
2
x
1
2
x
1
x
dx
d








+ is equal to
(1)
2
x
1
1+ (2)
2
x
1
1+−
(3)
2
x
1
1− (4) x
2
– 1
1
d
(x
4
– 2 sin x + 3 cos x)
dx
(A)4x
3
– 2 cos x + 3 sin x
(B) 3x
2
+ 2 cosx + 3 sin x
(C) 4x
3
+ 2 cosx – 3 sin x
(D) 4x
3
– 2 cos x – 3 sin x
dy
at x = 1 is -
dx
If14. y = x
3
+ 2x + 1 then
(A) 6 (B) 7
(C) 8 (D) 5
dy
is -
dx
y15. = secx + tanx , value of
(A)sec
2
x + tan x (B)tan
2
x + sec x
(C)secx (tanx + secx) (D) sec x (1 + sec x)
dx
d
x1
(x
2
+1)
+
(A)
2
2
(x+1)
x+2x−1
(B)
2
(x+1)
x
2
−2x+1

(C)
x+1
x
2
+2x−1
(D)
2
2
(x+1)
x+2x+1

dx
d





+1+
x
32
1
x
1 ⎞

(A)x +
x
1
2
+
x
3
1
(B)
x
4
3
(C)x –
x
1
2

x
3
3
(D)
–2

x
3
–2

x x
2
3
16
17.
Lakshya Educare
Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com

Q.1
dx
d
x2sin
(A) (sin 2x)
–1/2
(B) cos 2x (sin 2x)
–1/2
(C) 2 cos 2x (sin 2x)
–1/2
(D) cos 2x (sin 2x)
1/2
Q.2
dx
d
xtan
(A) 2 sec
2
x (tan x)
–1/2
(B)
2
1
sec
2
x (tan x)
–1
(C)
2
1
(tan x)
–1/2
(D) 2 (tan x)
–1/2
Q.3
dx
d
sin (log x)
(A) cos (log x) (B) log (cos x) (C) x cos (log x) (D)
x
)xcos(log
Q.4
dx
d
1x 2
2
+
(A) 2x (2x
2
+ 1)
1/2
(B) 2x (2x
2
+ 1)
–1/2
(C) (2x
2
+ 1)
1/2
(D) (2x
2
+ 1)
–1/2
Q.5
dx
d
x2
e
(A)
x2
e
x2
(B) x2
x2
e (C)
x2
e (D)
2/ 1
)x2(
e

Q.6
dx
d
sin
2
(x
2
)
(A)2x sin
2
x
2
cos x
2
(B)4x sin x
2
cos x (C)2x sin 2x
2
(D)4x sin x cos x
2
Q.7 y = cos
2
x is given, then
dx
dy
is -
(A)–2 sinx cos x(B)2 sin x cos x (C)sin
2
x (D)none of these
Q.8 If y = log (tanx), then
dx
dy
is -
(A)
xtan
xcos
2
(B)
xtan
1
(C)
xtan
xsec
2
(D)log(sec
2
x)
Q.9 If y = sin(2x
2
), then
dx
dy
is -
(A)4x cos (2x
2
) (B)2 cos (2x
2
)(C) 4 cos (2x
2
) (D)– 4 cos (2x
2
)
%$6,&0$7+6/'$5PHYSICS
Lakshya Educare
Turtle Tutorials - BM 3
Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com

Q.10 If y = sin
2
x – 2 tan
2
x , then
dx
dy
at x =
4
π
is -
(A)– 11 (B)– 7 (C)– 13 (D)– 15
Q.11 If y = x
3
+ 2x + 1 then
dx
dy
at x = 1 is -
(A) 6 (B) 7 (C) 8 (D) 5)
Q.12
dx
d
[log(cosx)] is :
(1)–tan x (2) tan x (3) cot x (4)–cot x
Q.13
dy
d
(y + 2)
2
is equal to
(1) 2y + 4 (2) 2y – 4 (3) 4 + y
2
(4)2(y + 1)
14.Slope of graph y = tanx drawn between y and x, at x = is :
4
(A) 0 (B) 1 (C) 2 (D)
2
1
15.Equation of straight line is 2x + 3y = 5. Slope of the straight line is :
(B) 2/3 (C) –2/3 (D) –3/2(A) 3/2
dt
dy
16.y = 5sin (3 t + )
where and are constant
Find
(A) 15

co

s (3

t

+ )
(C) 15 cos (3 t + )
(B) 15

cos

(3 t)
(D) 5 cos (3 t + )
dt
17.If y = e
kt
then
dy
will be
(A) e
kt
(B) e
kt
/ k (C) te
kt
(D) ke
kt
ss
18.Differentiation of sin(x
2
) w.r.t. x is -
(A) cos (x
2
) (B) 2x cos(x
2
) (C) x
2
cos(x
2
) (D) – cos (2x)
19.Double differentiation of displacement w.r.t. time is :
(A) acceleration (B) velocity (C) force (D) none
2
dx
2
If y = x
3
then
dy
is -
20.
(A) 6x
2
(B) 6x (C) 3x
2
(D) 3x
dx
2
d
2
y
will be :21.If y = sinx, then
(A) cos x (B) sin x (C) – sin x (D) sin x + C
Lakshya Educare
Turtle Tutorials, Marris Road, Aligarh, PH 7617733555 | www.turtletutorials.com

BM solutions 1,2,3