Difficult empirical puzzles from finance

KiranKumar918931 7 views 69 slides Aug 30, 2024
Slide 1
Slide 1 of 69
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69

About This Presentation

Empirical facts from Finance


Slide Content

Difficult Empirical Facts from
Finance
Blake LeBaron
International Business School
Brandeis University
www.brandeis.edu/~blebaron
SFI CSSS, 2007
Santa Fe, NM

Empirical Facts
Robust over time
Robust over markets

Equity

Bonds

FX

Commodities
Highly significant

Empirical Challenges
Two big features

Long memory

Fat tails
Complexity connections:

Length scales (time or space)
Learning connections

Coevolution

Finance Facts/puzzles
Price time series

Near martingale behavior

Volatility persistence

Fat tails (leptokurtosis)

Technical trading

Nonlinear features/predictability??
Prices relative to something

Deviations from fundamentals

Equity premium
Trading volume
Microstructure facts

Near Martingale Prices
r(t+1) uncorrelated, and difficult to directionally
forecast (including nonlinear)
Many horizons (better short)
Many series (almost any liquid asset)
Theory: EMH (Efficient Market Hypothesis)


p
t=logP
t()
E
t(p
t+1)=p
t
log(p
t+1
)=log(p
t
)+r
t+1

Volatility Persistence
Return magnitudes persistent
Very persistent!!
History

Mandelbrot

ARCH/GARCH

Stochastic volatility

Realized volatility


corr(r
t
2
,r
t−j
2
)>0j>>0
corr(|r
t|,|r
t−j|)>0j>>0
corr(σ
t
2

t−j
2
)>0j>>0

Data Introduction
Dow Jones Industrials

Jan 1897-Sep 2004 (29602 obs)
British Pound

June 1973 - Feb 2006
IBM Daily returns and volume

Dow Jones Daily Returns
1897-2004

Dow Volatility Persistence

Long Memory Stochastic
Volatility


r
t

t
ε
t
ε
t
~N(0,1)
log(σ
t
2
)=f(log(σ
t−j
2
))+u
t
log(σ
t
2
)=a
ie
t−i
i=0

Fractionally Integrated
Process (Long Memory)

x
t=a
je
t−j
j=0


a
j=
Γ(j+d)
Γ(j+1)Γ(d)
a
j≈
1
Γ(d)
j
d−1
a
j+1/a
j=
(j+1)
d−1
(j)
d−1
→1

Autocorrelation Comparisons


Standard Models
ρ
k

k
,α=0.97
Long Memory Models
ρ
k=k
2d−1
,d=0.4
ρ
k
=k
−0.2
log(ρ
k)=−0.2log(k)

ACF Comparison

Dow Versus Long Memory
Volatility Process

Daily British Pound Returns: 1973-2006

Volatility persistence: Pound versus
Long Memory

Long Memory in Volatility
Present in almost all financial series
Best estimates:

Realized volatility

0.35 < d < 0.50
Causes

Adding short memory processes

Regime shifts

Nonlinearities

Other

Finance Facts/puzzles
Price time series

Near martingale behavior

Volatility persistence

Fat tails (leptokurtosis)

Technical trading

Nonlinear features/predictability??
Prices relative to something

Deviations from fundamentals

Equity premium
Trading volume
Microstructure facts

Fat Tailed Return Distributions
Returns at the < monthly frequency are
not normally distributed

Fat tails

Leptokurtic

Power laws

Dow Returns and Gaussian

Returns and Student-t(3)

Normal Quantile Comparisons
upper = Dow, lower = BP

Normal Quantile Comparisons
upper = Dow, lower = long memory (d=0.45)

Normal Quantile Comparisons
upper = Dow daily, lower = Dow monthly

Return Summary Statistics
1 Day 10 Days100 Days
Dow Kurtosis25.1 13.4 8.7
Long memory
d = 0.45
28.7 13.6 7.5
BP Kurtosis7.6 5.8 5.3
Long memory
d = 0.40
17.2 7.8 5.1

Approximate Power-law Tails
Shape Parameter

Pr(X>x)≈A|x|
−α
log(Pr(X>x))≈log(A)+−αlog(|x|)
E(|X|
m
)=∞m≥α

Dow Tail Probabilities

Practical Implications
Higher (>3) moment failure??
If true, problems for variance (not mean)
estimation
Possibly other problems

Variance Estimation
Increasing sample sizes

20, 60, 250, 1250, 2500, 5000
5000 length monte-carlo
Record quantiles

(0.01, 0.05, 0.5, 0.95, 0.99)

Daily Monte-carlo Series
Gaussian, mean 0, variance 1
Student-t’s, mean 0, variance 1

DF = 3, 4, 5

1 Day Variance Estimate:
Gaussian versus Student-t(3) Returns

Fine Sampling Frequency
Use higher frequency data to improve
precision
Doesn’t help for means
Good for variances and covariances

Monthly/daily Volatility Estimates
Gaussian Returns

Monthly/daily Volatility Estimates
Student-t(3) Returns

Why Should We Care About
Tails?
Large events / risk
Portfolio construction
Robust learning

Variance estimation

Filtering and parameter updating

Finance Facts/puzzles
Price time series

Near martingale behavior

Volatility persistence

Fat tails (leptokurtosis)

Technical trading

Nonlinear features/predictability??
Prices relative to something

Deviations from fundamentals

Equity premium
Trading volume
Microstructure facts

Technical Trading Patterns
Simple trend following rules have some
predictive abilities
Both equity and fx markets

Moving Average Trading
Rules (Simplest)


a
t,L=
1
L
p
t−j
j=0
L−1

p
t
≥a
t,L:Buy
<a
t,L
:Sell





Simple Rule Test


s
t=
1:Buy
−1:Sell






x
t=s
tr
t
x =
1
n
x
t
t=1
n
∑,s
2
=var(x)
z=
x
(s
2
/n)
(1/2)

Dow MA lengths
Returns and T-tests
MA length
(days)
Annual Return
(percentage)
T-stat
25 10.9 6.87
50 8.9 5.60
150 7.4 4.62
250 7.5 4.72
350 6.5 4.10

BP MA lengths
Returns and T-tests
MA length
(days)
Annual Return
(percentage)
T-stat
25 6.0 3.57
50 6.0 3.59
150 3.1 1.85
250 4.2 2.50
350 3.7 2.16

Dow Total Annual Return:
Long/short strategy (150 day MA)

Total Annual Return BP
(long/short, 150 day MA)

Nonlinear Features
“Leverage” effect
Volume/volatility and autocorrelations
Key question:

Stability and reliability

Finance Facts/puzzles
Price time series

Near martingale behavior

Volatility persistence

Fat tails (leptokurtosis)

Technical trading

Nonlinear features/predictability??
Prices relative to something

Deviations from fundamentals

Equity premium
Trading volume
Microstructure facts

Fundamentals
Dividend price ratios
Interest rate differentials
Real exchange rates

Real S&P Level and Shiller’s Dividend
Discounted Price

S&P Dividend Yield

Dividend Yield Autocorrelations

US Dollar - British Pound
Interest Differential

Interest Differential:
Autocorrelation

Equity Premium
Equity real return = 7-8% per year
Bond real return = 1%
Spread of 6% difficult to explain
Explanations

Tails and risk estimates

Learning (premium is falling over time)

Finance Facts/puzzles
Price time series

Near martingale behavior

Volatility persistence

Fat tails (leptokurtosis)

Technical trading

Nonlinear features/predictability??
Prices relative to something

Deviations from fundamentals

Equity premium
Trading volume
Microstructure facts

Trading Volume
Persistence
“Trading Time”

IBM Trading Volume

Detrended IBM Trading Volume

IBM Volume Autocorrelations

IBM Volatility/volume
Cross Correlation

Mixtures of Distributions
(Clock/calendar time)
Clark(1973, Econometrica)
Ann and Geman, (J of Fin, 2000)
Martens and van Dijk (2006, Erasmus)
Gillemot, Farmer, and Lillo (2005)

“There’s more to volatility than volume”

Finance Facts/puzzles
Price time series

Near martingale behavior

Volatility persistence

Fat tails (leptokurtosis)

Technical trading

Nonlinear features/predictability??
Prices relative to something

Deviations from fundamentals

Equity premium
Trading volume
Microstructure facts

Microstructure Facts
Seasonalities in spreads and volume
Order flows

Evans and Lyons (2002, Journal of Political
Economy, and others)

Predictability

Lillo and Farmer (2004) (and others)

Long memory

Schulmeister (2006, Financial Research Letters)

Technical trading and order flows

More Microstructure Facts
Book matters

Large moves

Osler, “Stop loss orders and price cascades”

Farmer et. al. “What really causes large price
changes?”, SNDE (2004).

Depth/liquidity
Trading time/mixtures of distributions

High Frequency Example
EBS: Electronic trading system
$/Euro exchange rates (high frequency
quotes and deals)
12/28/02 - 03/03/06
Clock versus event (deal) time
High/low range volatility estimate

(H-L)/( 0.5(H+L) )

1 Hour / 100 deal windows

1 Hour $/Euro Volatility ACF

1 Hour $/Euro Volatility ACF
Time of Day Effects Removed

100 Event $/Euro Volatility ACF

100 Event $/Euro Volatility ACF
Time of Day Effects Removed

Finance Facts/puzzles
Price time series

Near martingale behavior

Volatility persistence

Fat tails (leptokurtosis)

Technical trading

Nonlinear features/predictability??
Prices relative to something

Deviations from fundamentals

Equity premium
Trading volume
Microstructure facts

Explanations
Many facts hard to “explain” with
traditional modeling approaches

Fat tails

Volatility persistence

Deviations from fundamentals
Agent-based approaches