Digital Electronics Notes.pdf

6,522 views 108 slides Nov 14, 2022
Slide 1
Slide 1 of 108
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108

About This Presentation

nmbn


Slide Content

Unit-III
DIGITAL ELECTRONICS
FUNDAMENTALS
1

Digital and AnalogBasic Concepts:
AnalogSignals
Amplitude
(peak-to-peak)
Amplitude
(peak)
Period
(T)Hz
T
1
F
•Amplitude
Distance above reference line
•Cycle
One complete wave
•Frequency
Cycles per second .Hertz is the unit used for expressing
frequency. Frequency:
2

Example of Analog Signals
An analog signal can be any time-varying signal.
Minimum and maximum values can be either positive or
negative.
They can be periodic (repeating) or non-periodic.
Sine waves and square waves are two common analog
signals.
Note that this square wave is not a digital signal because
its minimum value is negative.
0 volts
Sine Wave Square Wave
(not digital)
Random-Periodic
3

Digital and AnalogBasic Concepts:
Digital Signals
Amplitude:
For digital signals, this will ALWAYS be 5volts.
Period:
The time it takes for a periodic signal to
repeat. (seconds)
Frequency:
A measure of the number of occurrences
of the signal per second. (Hertz, Hz)
Time High (t
H):
The time the signal is at 5 v.
Time Low (t
L):
The time the signal is at 0 v.
Duty Cycle:
The ratio of t
Hto the total period (T).
Rising Edge:
A 0-to-1 transition of the signal.
Falling Edge:
A 1-to-0 transition of the signal.
AmplitudeHz
T
1
F
Frequency:%100
T
t
DutyCycle
H
Period (T)
4

Example of Digital Signals
Digital signal are commonly referred to as square waves or
clock signals.
Their minimum value must be 0 volts, and their maximum
value must be 5 volts.
They can be periodic (repeating) or non-periodic.
The time the signal is high (t
H) can vary anywhere from 1% of
the period to 99% of the period.
0 volts
5 volts
5

Differences of Analog and Digital Signals
Analog Signals
Continuousbothtimeand
amplitude
Infiniterangeofvalues
Moreexactvalues,but
moredifficulttoworkwith
Storingsuchasignal
requireslargeamountof
memory
Processingrequireslarge
processingpowerormore
time
Transmittingrequiresa
largebandwidth
Digital Signals
Discreteintimeand
quantizedinamplitude
Finiterangeofvalues
Notasexactasanalog,but
easiertoworkwith
Storingsuchasignal
requireslessamountof
memory
Processingrequireslow
processingpowerorless
time
Transmittingrequiresaless
bandwidththananalog
6

Number Systems
A number system defines how a number can be
represented using distinct symbols.
The number the numeral represents is called its value.
A number can be represented differently in different
systems
For example, the two numbers (2A)
16and (52)
8both
refer to the same quantity, (42)
10, but their
representations are different
7

Common Number Systems
SystemBaseSymbols
Used by
humans?
Used in
computers?
Decimal10(D)0, 1, … 9 Yes No
Binary 2(B)0, 1 No Yes
Octal 8(O)0, 1, … 7 No No
Hexa-
decimal
16(H)0, 1, … 9,
A, B, … F
No No
Four number system
Decimal (10) , Binary (2), Octal (8) and Hexadecimal(16)
8

Decimal numbers
In the decimal number systems each of the ten digits, 0 through 9,
represents a certain quantity also known asbase-10 number systems
The position of each digit in a decimal number indicates the magnitude of
the quantity represented and can be assigned a weight. The weights for
whole numbers are positive powers of ten that increases from right to left,
beginning with 10º = 1
For fractional numbers, the weights are negative powers of ten that decrease
from left to right beginning with 10
−1
.
9

Decimal numbers
10^410^310^210^110^010^-110^-210^-3
10000100010010 1 0.10.010.001
Base
Rightof decimal pointleft of the decimal point
10

Decimal numbers
Example: the value 725.194 is represented in expansion form as follows:
7 *10^2+2 *10^1+5 *10^0 + 1 *10^-1+9 *10^-2+4 * 10^-3
= 7 * 100 + 2 * 10 + 5 * 1 + 1 * 0.1 + 9 * 0.01 + 4 * 0.001
= 700 + 20 + 5 + 0.1 + 0.09 + 0.004
= 725.194
11

Binary Numbers
•Mostmoderncomputersystemusingbinarylogic.The
computerrepresentsvalues(0,1)usingtwovoltagelevels
(usually0Vforlogic0andeither+3.3Vor+5Vforlogic1).
•TheBinaryNumberSystemusesbase2includesonlythedigits
0and1.Thepositionofa1or0inabinarynumberindicates
itsweight,orvaluewithinthenumber,justasthepositionofa
decimaldigitdeterminesthevalueofthatdigit.
•With4digitspositionwecancountfromzeroto15.Ingeneral,
withnbitswecancountuptoanumberequalto2ⁿ-1.
•Largest decimal number = 2
??????
-1
12

Binary Numbers
•Abinarynumberisaweightednumber.Theright-mostbitisthe
leastsignificantbit(LSB)inabinarywholenumberandhasa
weightof2º=1.Theweightsincreasesfromrighttoleftbya
poweroftwoforeachbit.Theleft-mostbitisthemost
significantbit(MSB);itsweightdependsonthesizeofthe
binarynumber.
•Theweightedvaluesforeachpositionare:
2^52^42^32^22^12^02^-12^-2
32 16 8 4 2 1 0.50.25
Base
Rightof radix pointleft of the radix point
13

Octal Systems
•Computerscientistsareoftenlookingforshortcutstodo
things
•Oneofthewaysinwhichwecanrepresentbinary
numbersistousetheiroctalequivalentsinstead
•Thisisespeciallyhelpfulwhenwehavetodofairly
complicatedtasksusingnumbers
•Theoctalsystemiscomposedofeightdigits,Knownas
base-8numbersystemswhichare:0,1,2,3,4,5,6,7
•Tocountabove7,beginanothercolumnandstartover:
10,11,12,13,14,15,16,17,20,21andsoon.
•Countinginoctalissimilartocountingindecimal,except
thatthedigits8and9arenotused.14

Hexadecimal Numbers
•Thehexadecimalnumbersystemhassixteendigitsandisused
primarilyasacompactwayofdisplayingorwritingbinary
numbersbecauseitisveryeasytoconvertbetweenbinaryand
hexadecimal.
•Longbinarynumbersaredifficulttoreadandwritebecauseitis
easytodroportransposeabit.Hexadecimaliswidelyusedin
computerandmicroprocessorapplications.
•Thehexadecimalsystemknownasbase-16numbersystems,
•Itiscomposedof16digitsandalphabeticcharacters,whichare:
0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F
•Tocountabove16,beginanothercolumnandstartover:
10,11,12,13,14….1D,1E,1F,20,21andsoon
•Themaximum3-digitshexadecimalnumberisFFFordecimal
4095andmaximum4-digithexadecimalnumberisFFFFor
decimal65,535
15

Number Representation in different systems
DecimalBinaryOctal
Hexa-
decimal
0 00 0
1 11 1
2 102 2
3 113 3
4 1004 4
5 1015 5
6 1106 6
7 1117 7
Quantities/Counting (1 of 3)
16

Quantities/Counting (2 of 3)
DecimalBinaryOctal
Hexa-
decimal
8 100010 8
9 100111 9
10 101012 A
11 101113 B
12 110014 C
13 110115 D
14 111016 E
15 111117 F
Number Representation in different systems
17

Quantities/Counting (3 of 3)
DecimalBinaryOctal
Hexa-
decimal
16 1000020 10
17 1000121 11
18 1001022 12
19 1001123 13
20 1010024 14
21 1010125 15
22 1011026 16
23 1011127 17
Etc.
Number Representation in different systems
18

Number System Conversions
The possibilities:
Hexadecimal
Decimal Octal
Binary
19

Quick Example
25
10= 11001
2= 31
8= 19
16
Base
20

Decimal to Decimal
Hexadecimal
Decimal Octal
Binary
21

125
10=>5 x 10
0
= 5
2 x 10
1
= 20
1 x 10
2
= 100
125
Base
Weight
Decimal to decimal
22

Fractions
3.14 =>4 x 10
-2
= 0.04
1 x 10
-1
= 0.1
3 x 10
0
= 3
3.14
23

Binary to Decimal
Hexadecimal
Decimal Octal
Binary
24

Binary to Decimal
Technique
Multiply each bit by 2
n
, where nis the “weight” of the bit
The weight is the position of the bit, starting from 0 on
the right
Add the results
25

Example
101011
2=> 1 x 2
0
= 1
1 x 2
1
=2
0 x 2
2
= 0
1 x 2
3
= 8
0 x 2
4
=0
1 x 2
5
= 32
43
10
Bit “0”
26

Binary to Decimal
1101 = 1 x 2
3
+ 1 x 2
2
+ 0 x 2
1
+ 1 x 2
0
= 1 x 8+ 1 x 4+ 0 x 2+ 1 x 1
= 8 + 4 + 0 + 1
(1101)
2= (13)
10
1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ….
27

Binary to decimal (Fractions)
10.1011 => 1 x 2
-4
= 0.0625
1 x 2
-3
= 0.125
0 x 2
-2
= 0.0
1 x 2
-1
= 0.5
0 x 2
0
= 0.0
1 x 2
1
= 2.0
2.6875
28

Octal to Decimal
Hexadecimal
Decimal Octal
Binary
29

Octal to Decimal
Technique
Multiply each bit by 8
n
, where nis the “weight” of the bit
The weight is the position of the bit, starting from 0 on
the right
Add the results
30

Example
724
8=> 4 x 8
0
= 4
2 x 8
1
= 16
7 x 8
2
= 448
468
10
31

Octal to Decimal
137 = 1 x 8
2
+ 3 x 8
1
+ 7 x 8
0
= 1 x 64+ 3 x 8+ 7 x 1
= 64 + 24 + 7
(137)
8= (95)
10
Digits used in Octal number system –0 to 7
32

Hexadecimal to Decimal
Hexadecimal
Decimal Octal
Binary
33

Hexadecimal to Decimal
Technique
Multiply each bit by 16
n
, where nis the “weight” of the
bit
The weight is the position of the bit, starting from 0 on
the right
Add the results
34

Example
ABC
16=>C x 16
0
= 12 x 1 = 12
B x 16
1
= 11 x 16 = 176
A x 16
2
= 10 x 256 = 2560
2748
10
35

Hex to Decimal
BAD = 11 x 16
2
+ 10 x 16
1
+ 13 x 16
0
= 11 x 256+ 10 x 16+ 13 x 1
= 2816 + 160 + 13
(BAD)
16= (2989)
10
A = 10, B = 11, C = 12, D = 13, E = 14, F = 15
36

Number System Conversions
Decimal to Base-k [Successive division]
1.Divide the decimal number to be converted by ‘k’
2.The remainder from Step 1 is the least significant digit
3.Divide the quotient of the previous divide by the ‘k’
4.Record the remainder from Step 3 as the next digit
5.Repeat Steps 3 and 4, getting remainders from right to left, until
the quotient becomes zero in Step 3.
6.The last remainder thus obtained will be the Most Significant Digit
37

Number System Conversions
Decimal to Base-k [Successive Multiplication]
1.Multiply the fractional decimal number, to be converted, by ‘k’
2.The integer from Step 1 is the highest order digit
3.Multiply the fractional part from Step 1 by the ‘k’
4.Record the integer from Step 3 as the next digit
5.Repeat Steps 3 and 4, getting integers from left to right, until the
fractional part becomes zero in Step 3.
38

Decimal to Binary
Hexadecimal
Decimal Octal
Binary
39

Example
125
10= ?
2 2 125
62 12
31 02
15 12
7 12
3 12
1 12
0 1
125
10= 1111101
2
40

Decimal to Binary
13
6
3
1
0
2
2
2
2
1
0
1
1
(13)
10= (1101)
2
MSB
LSB
41

Fractions
Decimal to binary
3.14579
.14579
x 2
0.29158
x 2
0.58316
x 2
1.16632
x 2
0.33264
x 2
0.66528
x 2
1.33056
etc.
11.001001...
42

Decimal to Octal
Hexadecimal
Decimal Octal
Binary
43

Example
1234
10= ?
8
8 1234
154 28
19 28
2 38
0 2
1234
10= 2322
8
44

Decimal to Hexadecimal
Hexadecimal
Decimal Octal
Binary
45

Example
1234
10= ?
16
1234
10= 4D2
16
16 1234
16 77 2
4 13 = D16
0 4
46

Decimal to Hex
2989
186
11
0
16
16
16
13
10
11
(2989)
10= (BAD)
16
MSP
LSP
47

Binary to Octal
Hexadecimal
Decimal Octal
Binary
48

Binary to Octal
Technique
Binary to Octal [Integers]
1.Divide the binary digits into groups of three (starting from the right).
2.Convert each group of three binary digits to one octal digit
Binary to Octal [Fractions]
1.Divide the binary digits into groups of three (starting from the radix
point).
2.Convert each group of three binary digits to one octal digit
49

Example
1011010111
2= ?
8
1 011 010 111
1 3 2 7
1011010111
2= 1327
8
50

Binary to Hexadecimal
Hexadecimal
Decimal Octal
Binary
51

Binary to Hexadecimal
Technique
Binary to Hexadecimal [Integers]
1.Divide the binary digits into groups of four (starting from the right).
2.Convert each group of four binary digits to one hexadecimal digit
Binary to Hexadecimal [Fractions]
1.Divide the binary digits into groups of four (starting from the radix
point).
2.Convert each group of four binary digits to one hexadecimal digit
52

Example
1010111011
2= ?
16
10 1011 1011
2B B
1010111011
2= 2BB
16
53

Octal to Hexadecimal
Hexadecimal
Decimal Octal
Binary
54

Octal to Hexadecimal
Technique
Use binary as an intermediary
55

Example
1076
8= ?
16
1 0 7 6
001 000 111 110
2 3 E
1076
8= 23E
16
56

Hexadecimal to Octal
Hexadecimal
Decimal Octal
Binary
57

Hexadecimal to Octal
Technique
Use binary as an intermediary
58

Example
1F0C
16= ?
8
1 F 0 C
0001 1111 0000 1100
1 7 4 1 4
1F0C
16= 17414
8
59

Octal to Binary
Hexadecimal
Decimal Octal
Binary
60

Octal to Binary
Technique
Convert each octal digit to a 3-bit equivalent binary
representation
61

Example
705
8= ?
2
7 0 5
111 000 101
705
8= 111000101
2
62

Hexadecimal to Binary
Hexadecimal
Decimal Octal
Binary
63

Hexadecimal to Binary
Technique
Convert each hexadecimal digit to a 4-bit equivalent
binary representation
64

Example
10AF
16= ?
2
1 0 A F
0001 0000 1010 1111
10AF
16= 0001000010101111
2
65

Binary Addition
It is a key for binary subtraction, multiplication, division
Each position has a value that can be represented by a
character in the set.
A Carry to the next higher position is generated if the addition
generates a value that cannot be represented by the character
set
66

Binary Addition Example
67

Adding Two Bits
a b
s = a + b
Decimal Binary
0 0 0 00
0 1 1 01
1 0 1 01
1 1 2 10
68
SUM
CARRY

Adding Three Bits: Include Carry
Input
a b c
s = a + b + c
Decimal valueBinary value
0 0 0 0 00
0 0 1 1 01
0 1 0 1 01
0 1 1 2 10
1 0 0 1 01
1 0 1 2 10
1 1 0 2 10
1 1 1 3 11
69
SUMCARRY

LOGIC GATES
A logic gate is an elementary building block of a digital circuit.
Logic gates can be created using transistor technology, that
perform Boolean operations on high (5V) and low(0V) signals.
There are seven logic gates:
Basic gates: AND, OR and NOT
Universal gates:NOR and NAND
Other gates : XOR and XNOR
70

AND GATE
ForANDgate,ifboththeinputsare1theoutputis1;
otherwise,theoutputis0.
71

OR GATE
OR Gate: For OR gate, if both the inputs are 0 the output is 0;
otherwise, the output is 1.
72

NOT GATE
NOT Gate: A NOT gate accepts one input signal (0 or 1) and
returns the complementary (opposite) signal as output.
73

NAND GATE
NANDGate:ForNAND(“NOTofAND”)gate,ifboththe
inputsare1,theoutputis0;otherwise,theoutputis1.
74

NOR GATE
NORGate:TheNOR(“NOTofOR”)gate,ifboththe
inputsare0,theoutputis1;otherwise,theoutputis0.
75

XOR GATE
XORGate:ForXORgate,ifboththeinputsaresame,
theoutputis0;otherwise,theoutputis1.
76

XNOR GATE
XNOR Gate: For XNOR gate, if both the inputs are
same, the output is 1; otherwise, the output is 0.
77

PROPERTIES OF BOOLEAN
ALGEBRA
78

BASIC RULES OF BOOLEAN ALGEBRA
79

Proof For A+�B = A+B
A+�B = A.1 + �B
= A(1+B) + �B
= A + AB +�B
= A + B (A + �)
80

Proof For (A+B)(A+C) = A+BC
(A+B)(A+C) = A.A + A.C + B.A + B.C
= A + A.C + B.A + BC
= A(1+C)+ BA +BC
= A + BA + BC
= A(1+B) + BC
= A +BC
81

DeMorgan’sTheorems
(i)
(ii)
82

EXAMPLES
1. Implement the Boolean Expression
using basic Gates
83

2. Simplify the boolean expression
and realize using basic gates.
84

3. Write the boolean expression for the given logic diagram
85

HALF ADDER
HalfAdderisacombinationalarithmeticcircuitthataddstwo
bitsandproducessumandcarryasoutput.
BlockdiagramofhalfadderisshownbelowwhereAandB
areinputbits.
86

Truth table of half adder is as shown below where sum is
represented as ‘S’ and carry as ‘C’.
From the truth table, expressions for sum and carry can be written
as follows
S = and C = A.B
87
�B + A�
=

Sum and carry can be realized using logic gates as follows
88

FULL ADDER
Full Adder is a combinational arithmetic circuit that adds three bits
and produces sum and carry as
Output.
BlockdiagramoffulladderisshownbelowwhereA,BandCin
areinputbits.
89

Truth table of full adder is as shown below
90

From the truth table, expressions for sum and carry, Coutcan be
written and simplified as follows
91

92

Sum and carry of full adder can be realized as follows
93

MULTIPLEXER
Multiplexing:Multiplexingisapropertyofcombiningoneormore
signalsandtransmittingonasinglechannel.Thisisachievedbyadevice
calledMultiplexer.
Multiplexer:Multiplexerisadigitalswitch,alsocalleddataselector
whichisacombinationalcircuitwith2ⁿinputlines,1outputlineandn
selectlines.
94

2:1Multiplexer
A2:1multiplexerconsistsof2inputs,1outputand1selectline.
Dependingontheselectline,theoutputisconnectedtoeitherofthe
inputs.
Iftheselectlineis0,theoutputwillbeswitchedtoD0andifselect
lineis1,theoutputwillbeswitchedtoD1.
Theblockdiagramof2:1muxisshownbelow
95

Truth table of 2:1 mux is shown below
From the truth table, expression for2:1 muxoutput Y=??????.??????
�+ ??????.D
0
2:1 mux can be implemented using logic gates as follows.
96
Select Data Inputs,
S
Output,
Y
0 D
0
1 D
1

4:1Multiplexer
A4:1multiplexerconsistsof4inputs,1outputand2selectlines.
Dependingontheselectlines,theoutputisconnectedtoparticular
inputwhichisshowninthetruthtable.
Iftheselectlinesare0,0D0willbeconnectedtotheoutput,ifselect
linesare0,1D1willbeconnectedtooutputandsoon.
Theblockdiagramof4:1muxisshownbelow
97

Truth table of 4:1 mux is shown below
From the truth table, expression for 4:1 mux output
??????=??????
�.??????
�.??????
�+ ??????
�. ??????
�.??????
�+ ??????
�.??????
�.??????
�+ ??????
�. ??????
�.??????
�
98

4:1 mux can be implemented using logic gates as follows.
99

DECODERS
Decoderisacombinationalcircuitthathasninputsand2
n
outputs.
Dependingontheinputcombinations,particularoutputwillbehighfor
decoder.
1:2 Decoder
1:2decoderhas1inputand2outputs.
Ifinputis0,D0willbehigh(1)andifinputis1,D1willbesetto1.
Theblockdiagramof1:2decoderisshownbelow
100

The truth table, expression and implementation of decoder is shown in
the figures below.
Truth table:
Output expressions:
??????
0= �and ??????
1=A
Implementation:
101

2:4 Decoder
2:4decoderhas2inputsand4outputs.
Ifinputsare0,0D0willbesetto1andifinputsare0,1,D1willbeset
to1andsoonasshowninthetruthtable.
Theblockdiagramof2:4decoderisshownbelow
102

The truth table and implementation of 2:4 decoder is shown in the
figures below.
Truth table:
Output expressions and Implementation:
??????
0=�
1.�
0
??????
1=�
1.�
0
??????
2=�
1.�
0and ??????
3=�
1.�
0
103

D FLIP-FLOP
Flip-flop:Flip-flopisabasicbuildingblockofsequentialcircuitsthat
canstoreonebitofinformationeither1or0.Ithastwostablestates.The
outputofflip-flopchangesaccordingtoinputonlywhenclockis
applied.
DFlip-flop:
Dflip-flopisconstructedfromgatedSRflip-flopwithaninverter
addedbetweenSandRinputs.
Dflip-flophasoneinputandtwooutputsasshowninsymbol.
DinputofDflip-flopisconnectedtoSandinverterisusedtogenerate
reset,R.
Hence,S=DandR=notofDasshownintheblockdiagramand
circuitdiagram.
104

Symbol and circuit of D-flip flop is shown below.
105

Truth table of D-flip flop is shown below
When D is 1 and clock is high, it sets the flip-flop and the output, Q is
1.
When D is 0 and clock is high, it resets the flip-flop and the output, Q
is 0.
When clock is 0 or not given, irrespective of the input D, the output
remains in the previous state.
106

D LATCH
Latchisabasicbuildingblockofsequentialcircuitsthatcanstoreone
bitofinformationeither1or0.Theoutputoflatchchangesaccordingto
inputonlywhenenableisapplied.
DlatchconstructionissameasDflip-flopbutinDlatchenableisused
inplaceofclock.
ThesymbolandcircuitofDlatchareshownbelow.
SYMBOL
107

Truth tablefor D latch is shown below
When D is 1 and enable is high, it sets the latch and the output, Q is 1.
When D is 0 and enableis high, it resets the latch and the output, Q is
0.
When enableis 0 or not given, irrespective of the input D, the output
remains in the previous state.
108
Tags