REFERENCES
[1] R. Verbeek, J.V. Weide, Global assessment of dimethyl-ether:
comparison with other fuels, SAE Paper 971607, 1997.
[2] T.H.Fleisch,A.Basu,M.J.Gradassi,J.G.Masin,Dimethylether:a
fuel for the 21st century, Stud. Surf. Sci. Catal. 107 (1997) 117–125.
[3] T.A. Semelsberger, R.L. Borup, H.L. Greene, Dimethyl ether
(DME) as an alternative fuel, J. Power Sources 156 (2006) 497–511.
[4] T. Amano, F.L. Dryer, Effect of dimethyl ether, NO
xNO
x, and ethane
on CH
4oxidation: High pressure, intermediate-temperature
experiments and modeling, Proc. Combust. Inst. 27 (1998) 397–404.
[5] Z. Chen, X. Qin, Y. Ju, Z. Zhao, M. Chaos, F.L. Dryer, High
temperature ignition and combustion enhancement by
dimethyl ether addition to methane-air flames, Proc.
Combust. Inst. 31 (2007) 1215–1222.
[6] N. Iida, T. Igarashi, Auto-ignition and combustion of n-butane
and DME/air mixtures in a homogeneous charge compression
ignition engine. SAE Paper 2000-01-1832.
[7] D. Cocco, V. Tola, G. Cau, Performance evaluation of
chemically recuperated gas turbine (CRGT) power plants
fuelled by di-methyl-ether (DME), Energy 31 (2006) 1446–1458.
[8] U. Pfahl, K. Fieweger, G. Adomeit, Self-ignition of
diesel-relevant hydrocarbon-air mixtures under engine
conditions, Proc. Combust. Inst. 26 (1996) 781–789.
[9] P. Dagaut, C. Daly, J.M. Simmie, M. Cathonnet, The oxidation
and ignition of dimethylether from low to high temperature
(500–1600 K): experiments and kinetic modeling, Proc.
Combust Inst. 27 (1998) 361–369.
[10] C.T. Bowman, D.M. Golden, R.K. Hanson, H. Pitsch, D.F.
Davidson, A. Bardos, R. Cook, Z. Hong, P. Iyengar, S. Shashank,
S. Vasu, K. Walters, R. Malhotra, GCEP Technical Report, 2006
http://gcep.stanford.edu/pdfs/QeJ5maLQQrugiSYMF3ATDA/
2.6.5.bowman_06.pdf.
[11] C.M. Zinner, E.L. Petersen, Methane and dimethyl ether
oxidation at elevated temperatures and pressures. 2007 Fall
Technical Meeting of the Eastern States Section of the
Combustion Institute, University of Virginia, October 21–24
(2007) Paper A-09.
[12] P. Dagaut, J.C. Boettner, M. Cathonnet, Chemical kinetic study
of dimethylether oxidation in a jet stirred reactor from 1 to
10 atm: experiments and kinetic modeling, Proc. Combust.
Inst. 26 (1996) 627–632.
[13] H.J. Curran, W.J. Pitz, C.K. Westbrook, P. Dagaut, J.-C. Boettner,
M. Cathonnet, A wide range modeling study of dimethyl ether
oxidation, Int. J. Chem. Kinet. 30 (1998) 229–241.
[14] S.L. Fischer, F.L. Dryer, H.J. Curran, The reaction kinetics of
dimethyl ether. I: High-temperature pyrolysis and oxidation
in flow reactors, Int. J. Chem. Kinet. 32 (2000) 713–740.
[15] H.J. Curran, S.L. Fischer, F.L. Dryer, The reaction kinetics of
dimethyl ether. II: Low-temperature oxidation in flow
reactors, Int. J. Chem. Kinet. 32 (2000) 741–759.
[16] X.L. Zheng, T.F. Lu, C.K. Law, C.K. Westbrook, H.J. Curran,
Experimental and computational study of nonpremixed
ignition of dimethyl ether in counterflow, Proc. Combust. Inst.
30 (2005) 1101–1109.
[17] Z. Zhao, M. Chaos, A. Kazakov, F.L. Dryer, Thermal
decomposition reaction and a comprehensive kinetic model
of dimethyl ether, Int. J. Chem. Kinet. 40 (2008) 1–18.
[18] K. Fieweger, R. Blumenthal, G. Adomeit, Self-ignition of S.I.
engine model fuels: a shock tube investigation at high
pressure, Combust. Flame 109 (1997) 599–619.
[19] H.J. Curran, P. Gaffuri, W.J. Pitz, C.K. Westbrook, A
comprehensive modeling study of n-heptane oxidation,
Combust. Flame 114 (1998) 149–177.
[20] G. Mittal, C.-J. Sung, Aerodynamics inside a rapid
compression machine, Combust. Flame 145 (2006)
160–180.
[21] G. Mittal, C.-J. Sung, A rapid compression machine for
chemical kinetics studies at elevated pressures and
temperatures, Combust. Sci. Tech. 179 (2007) 497–530.
[22] C.J. Mueller, W.J. Pitz, L.M. Pickett, G.C. Martin, D.L. Siebers,
C.K. Westbrook, Effects of oxygenates on soot Processes in
DI diesel engines: experiments and numerical simulations,
SAE Paper 2003-01-1791, 2003.
[23] C.J. Mueller, The quantification of mixture stoichiometry
when fuel molecules contain oxidizer elements or oxidizer
molecules contain fuel elements, SAE Paper 2005-01-3705,
2005.
[24] G. Mittal, C.-J. Sung, Autoignition of toluene and benzene at
elevated pressures in a rapid compression machine
Combust. Flame 150 (2007) 355–368.
[25]http://www.mae.case.edu/facilities/cdl/projects/rapidcomp/
rapiddatabase.
[26] A.E. Lutz, R.J. Kee, J.A. Miller, Senkin: a Fortran program for
predicting homogeneous gas phase chemical kinetics with
sensitivity analysis, Technical Report SAND87-8248, Sandia
National Laboratories, 1998.
[27] R.J. Kee, F.M. Rupley, J.A. Miller, Chemkin-II: a Fortran
chemical kinetics package for the analysis of gas-phase
chemical kinetics, Technical Report SAND89-8009, Sandia
National Laboratories, 1989.
[28] E.W. Kaiser, T.J. Wallington, M.D. Hurley, J. Platz, H.J. Curran,
W.J. Pitz, C.K. Westbrook, Experimental and modeling study
of premixed atmospheric-pressure dimethyl ether-air flames,
J. Phys. Chem. A 104 (2000) 8194–8206.
[29] A. McIlroy, T.D. Hain, H.A. Michelsen, T.A. Cool, A laser and
molecular beam mass spectrometer study of lowpressure
dimethyl ether flames, Proc. Combust. Inst. 28 (2000)
1647–1653.
[30] T.A. Cool, J. Wang, N. Hansen, P.R. Westmoreland, F.L. Dryer,
Z. Zhao, A. Kazakov, T. Kasper, K. Kohse-Höinghaus,
Photoionization mass spectrometry and modeling studies of
the chemistry of fuel-rich dimethyl ether flames, Proc.
Combust. Inst. 31 (2007) 285–293.
[31] C.A. Daly, J.M. Simmie, J. Würmel, N. Djebaïli, C. Paillard,
Burning velocities of dimethyl ether and air, Combust. Flame
125 (2001) 1329–1340.
[32] Z. Zhao, A. Kazakov, F.L. Dryer, Measurements of dimethyl
ether/air mixture burning velocities by using particle image
velocimetry, Combust. Flame 139 (2004) 52–60.
[33] X. Qin, Y. Ju, Measurements of burning velocities of dimethyl
ether and air premixed flames at elevated pressures, Proc.
Combust. Inst. 30 (2005) 233–240.
[34] H.J. Curran, personal communication (2007).
[35] W.R. Leppard, The autoignition chemistry of n-butane: an
experimental study, SAE Paper 872150, 1987.
[36] M. Ribaucour, R. Minetti, L.R. Sochet, H.J. Curran, W.J. Pitz, C.K.
Westbrook, Ignition of isomers of pentane: an experimental
and kinetic modeling study, Proc. Combust. Inst. 28 (2000)
1671–1678.
[37] X. He, M.T. Donovan, B.T. Zigler, T.R. Palmer, S.M. Walton, M.S.
Wooldridge, A. Atreya, An experimental and modeling study
of iso-octane ignition delay times under homogeneous charge
compression ignition conditions, Combust. Flame 142 (2005)
266–275.
[38] S.M. Walton, X. He, B.T. Zigler, M.S. Wooldridge, An
experimental investigation of the ignition properties of
hydrogen and carbon monoxide mixtures for syngas turbine
applications, Proc. Combust. Inst. 31 (2007) 3147–3154.
[39] A. Cox, J.F. Griffiths, C. Mohamed, H.J. Curran, W.J. Pitz, C.K.
Westbrook, Extents of alkane combustion during rapid
compression leading to single- and two-stage ignition, Proc.
Combust. Inst. 26 (1996) 2685–2692.
[40] S.H. Lam, Using CSP to understand complex chemical
kinetics, Combust. Sci. Tech. 89 (1993) 375–404.
1253FUEL PROCESSING TECHNOLOGY 89 (2008) 1244 –1254