Discrete Mathematics: Lecture 2 - Propositional Logic II.pdf

saharsoussa 5 views 43 slides Feb 28, 2025
Slide 1
Slide 1 of 43
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43

About This Presentation

Discrete Math


Slide Content

Math211
Discrete Mathematics
Propositional Logic II
SAHAR SELIM

Agenda
1.2 Applications of Propositional Logic
Translating English to logical expressions
1.3 Propositional Equivalences
Discrete Mathematics and Its Applications
Kenneth H. Rosen
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
2

1.2 Applications of Propositional Logic
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
3

Translating English to logical
expressions
Why?
Englishisoftenambiguousandtranslatingsentencesinto
compoundpropositionsremovestheambiguity
Usinglogicalexpressions,wecananalyzethemanddetermine
theirtruthvalues
Wecanuserulesofinferencestoreasonaboutthem
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
4

Example 1
Let p = “It is hot”, and q = “It is sunny”
It is not hot.
It is hot and sunny.
It is hot or sunny.
It is not hot but sunny.
It is neither hot nor sunny.
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
5
¬ p
p ^ q
p ˅q
¬ p ^ q
¬ p ^ ¬ q

Example 2
“You can access the internet from campus
if you are a computer science major or you are not a freshman. ”
p : “You can access the internet from campus”
q : “You are a computer science major”
r : “You are freshmen”
( q v ┐r ) p
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
6
Hypothesis
Conclusion
H C

System specification
Translating sentences in natural language into logical
expressions is an essential part of specifying both hardware and
software systems.
Consistency of system specification.
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
7

“The automated reply cannotbe sent whenthe file system is full”
1.Let p denote “The automated reply can be sent”
2.Let q denote “The file system is full”
The logical expression is
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
8
Example: System specification

Determine whether these system specifications are consistent:
1.The diagnostic message is stored in the buffer or it is retransmitted.
2.The diagnostic message is not stored in the buffer.
3.If the diagnostic message is stored in the buffer, then it is
retransmitted.
Let p denote “The diagnostic message is stored in the buffer”
Let q denote “The diagnostic message is retransmitted”
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
9
Example: System specification

Compound Propositions
Example:
p ∨q∧r : Could be interpreted as(p ∨q)∧r orp ∨(q ∧r)
Precedence order: ¬∧∨⊕ → ↔(IMP!) (Overruled by brackets)
We use this order to compute truth values of compound
propositions.
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
10

1.3 Propositional Equivalences
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
11

Propositional Equivalence
Two syntactically(i.e., textually) different compound propositions
may be the semantically identical (i.e., have the same
meaning). We call them equivalent .
Learn:
Various equivalence rules orlaws.
How to proveequivalences using symbolic derivations.
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
12

Proofs of Equivalence
Show that A ↔ B and ¬(A ⊕B) are equivalent
≡≡
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
13
•Truthtablescanbeusedto
showtheequivalenceoftwo
logicalexpressions
•Thelasttwocolumnshavethe
same values--sothe
expressionsareequivalent

Some Terminology
P ¬P P ˅¬P P ^ ¬P
T F T F
F T T F
Result is always
true, no matter
what P is
Result is always
false, no matter
what P is
Tautology Contradiction
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
14
Result is neither
tautology nor
contradiction
Contingency

A tautology is a proposition which is always true
Classic Example: P ∨¬P
A contradiction is a proposition which is always false
Classic Example: P ∧¬P
A contingency is a proposition which neither a tautology nor a
contradiction.
Example:(P ∨Q) →¬R
Some Terminology
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
15

Logical Equivalence
Two propositions P and Q are logically equivalent
if P ↔Q is a tautology.
We write: P ⇔ Q orP ≡Q
i.e. p and q contain the same truth values as each other in all rows of their truth
tables.
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
16

Proving Equivalence via Truth Tables
p→q⇔¬p ∨q
p q (p→q) ¬p ¬p ∨q
F F T T T
F T T T T
T F F F F
T T T F T
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
17
Important for
removing
implication

Prove that p ∨q⇔¬(¬p ∧¬q).
Proving Equivalence via Truth Tables
pqpp∨∨qq¬¬pp¬¬qq¬¬pp ∧∧ ¬¬qq¬¬((¬¬pp ∧∧ ¬¬qq))
FF
FT
TF
TT
F
T
T
T
T
T
T
T
T
T
F
F
F
F
F
F
F
F
T
T
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
18

Equivalence Laws
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
19
order

Equivalence Laws
Domination: p∨ T⇔T p∧F⇔F
Idempotent: p∨ p⇔p p∧ p⇔p
Double negation: ¬¬ p ⇔p
Associative: ( p∨q)∨r⇔p∨(q∨r)
(p∧q)∧r⇔p∧(q∧r)
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
20
Grouping

More Equivalence Laws
Distributive: p∨(q∧r) ⇔(p∨q)∧(p∨r)
p∧(q∨r) ⇔(p∧q)∨(p∧r)
De Morgan’s:
¬(p∧q) ⇔¬p ∨¬q
¬(p∨q) ⇔¬p ∧¬q
Trivial tautology/contradiction:
p∨¬p⇔T p∧¬p⇔F
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
21

Defining Operators via Equivalences
Using equivalences, we can define operators in terms of
other operators.
(a^b^c) ˅ (a^¬b^c) ˅ (a^¬b^c)

(a^c) ˅ (a^b)
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
22

Defining Operators via Equivalences
Exclusive Or
p⊕q⇔(p∨q)∧¬(p∧q)
p⊕q⇔(p∧¬q)∨(q∧¬p)
Implies
p→q ⇔¬p ∨q
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
26

Equivalences with Conditionals and
Biconditionals
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
27
Important for
removing
implication

Converse, Inverse, Contrapositive
Some terminology, for an implication p →q:
Its converseis: q →p
Its inverseis: ¬p→¬q
Its contrapositive: ¬q →¬p
One of these three has the same meaning (same truth table) as
p→q. Can you figure out which?
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
28

Sahar Selim MATH211 Lecture 2 | Propositional Logic II
29

Truth Table
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
30

Statement ≡Contrapositive
•The Statement If x=2, then x
2
=4 is true.
•Its Contrapositive If x
2
ǂ4, then x ǂ 2 so is true.
Converse ≡inverse
•Its Converse If x
2
=4, then x=2 is not true (x could be equal to - 2).
•Its inverse If x ǂ2, then x
2
ǂ4 so is not true (x could be equal to - 2).
p →q q →p ¬p →¬q ¬q →¬p
statement converse inverse contrapositive
Example
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
32

Ex.2
•Statement : If x is positive and x
2
=4, then x=2.
•Contrapositive : If x ǂ2 , then x is not positive or x
2
ǂ4.
Ex.3
•Statement: If the sun is shining then I go to store.
•Contrapositive: If I don’t go to store then the sun is not shining.
•Converse: If I go to store then the sun is shining.
•Inverse: If the sun is not shining then I don’t go to store
p →q q →p ¬p →¬q ¬q →¬p
statement converse inverse contrapositive
Example
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
33

Manipulating Propositions
Compound propositions can be simplified by using
simple rules.
Some are obvious, e.g. Identity, Domination,
Idempotence, double negation, commutativity,
associativity
Less obvious: Distributive, De Morgan’s laws
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
34

Example 1
p→q
¬p ∨q removing implication
¬p ∨¬(¬q) ¬¬x = x (double negation of q)
¬(¬q) ∨¬p commutative law
(¬q) →(¬p) Implication x→y⇔¬x ∨y
Show that p→q⇔¬q→¬pby logic algebra
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
35
p↔q⇔(p→q)∧(q→p)
p→q⇔¬p ∨q

Example 2
Show that (p ∧q) → (p ∨q) is a tautology using logical algebra
De Morgan law
Associative and commutative
law for disjunction
Commutative law for disjunction
Domination law
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
36

Example 3
Show that p↔q⇔(p ^ q) ∨(¬p ^¬q)by logic algebra
p↔q= (p→q)∧(q→p)
p↔q⇔(p→q)∧(q→p)
p→q⇔¬p ∨q
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
37

Sahar Selim MATH211 Lecture 2 | Propositional Logic II
38

Problem 1
Show that ¬(p ∨(¬p ∧q)) and ¬p ∧¬q are logically
equivalent by developing a series of logical equivalences.
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
39

Problem 2
Show p ˅(q ^ r) ≡(p ˅q) ^(p ˅r) using Truth Table
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
40

Problem 3
Check using a symbolic derivation whether
(p ∧¬q) →(p⊕r)⇔¬p ∨q∨¬r
(p ∧¬q) →(p⊕r)⇔
[Expand definition of →] ¬(p ∧¬q) ∨(p⊕r)
[Defn. of ⊕] ⇔ ¬(p ∧¬q) ∨((p∨r) ∧¬(p∧r))
[DeMorgan’sLaw]
⇔(¬p∨q)∨((p∨r) ∧¬(p∧r))
⇔[associative law] cont.
p→q⇔¬p ∨q
p⊕q⇔(p∨q)∧¬(p∧q)
p⊕q⇔(p∧¬q)∨(q∧¬p)
¬(p∧q) ⇔¬p ∨¬q
¬(p∨q) ⇔¬p ∧¬q
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
41

Problem 3 Continued...
(¬p ∨q) ∨((p∨r) ∧¬(p∧r))⇔[∨commutes]
⇔(q∨¬p)∨((p∨r) ∧¬(p∧r))[∨associative]
⇔q∨(¬p∨((p∨r) ∧¬(p∧r))) [distrib. ∨over ∧]
⇔q∨(((¬p∨(p∨r)) ∧(¬p∨¬(p∧r)))
⇔q∨(((¬p∨p) ∨r) ∧(¬p∨¬(p∧r))) [assoc.]
[trivial taut.] ⇔q∨((T∨r) ∧(¬p∨¬(p∧r)))
[domination]⇔q∨(T∧(¬p∨¬(p∧r)))
[identity] ⇔q∨(¬p∨¬(p∧r))⇔cont.
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
42

Problem 3 Continued...
q∨(¬p∨¬(p∧r))
[DeMorgan’s] ⇔q∨(¬p∨(¬p∨¬r))
[Assoc.] ⇔ q∨((¬p∨¬p) ∨¬r)
[Idempotent] ⇔ q∨(¬p∨¬r)
[Assoc.] ⇔ (q∨¬p) ∨¬r
[Commut.] ⇔ ¬p ∨q∨¬r
(Which was to be shown.)
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
43

Problem 4: Biconditionaloperator
p↔q⇔(p→q)∧(q→p)
p q p ↔ q (p→q) (q→p)(p→q)∧(q→p)
F F T T T T
F T F T F F
T F F F T F
T T T T T T
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
44
Try p↔q ⇔¬(p⊕q)

Summary of Lecture: Propositional Logic
Atomic propositions: p, q, r, …
Boolean operators:¬∧∨⊕→↔
Compound propositions: s:≡(p∧¬q) ∨r
Equivalences:p∧¬q ⇔¬(p →q)
Proving equivalences using:
Truth tables
Symbolic derivations. p⇔q ⇔r …
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
46

Supplementary Material
Kimberly BrehmChannel
Discrete Math 1.2.1 -Translating Propositional Logic Statements
Sahar Selim MATH211 Lecture 2 | Propositional Logic II
48

Sahar Selim MATH211 Lecture 2 | Propositional Logic II
49
Tags