DLD Chapter-4.pdf

TamiratDejene1 469 views 109 slides Sep 29, 2023
Slide 1
Slide 1 of 109
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68
Slide 69
69
Slide 70
70
Slide 71
71
Slide 72
72
Slide 73
73
Slide 74
74
Slide 75
75
Slide 76
76
Slide 77
77
Slide 78
78
Slide 79
79
Slide 80
80
Slide 81
81
Slide 82
82
Slide 83
83
Slide 84
84
Slide 85
85
Slide 86
86
Slide 87
87
Slide 88
88
Slide 89
89
Slide 90
90
Slide 91
91
Slide 92
92
Slide 93
93
Slide 94
94
Slide 95
95
Slide 96
96
Slide 97
97
Slide 98
98
Slide 99
99
Slide 100
100
Slide 101
101
Slide 102
102
Slide 103
103
Slide 104
104
Slide 105
105
Slide 106
106
Slide 107
107
Slide 108
108
Slide 109
109

About This Presentation

Combinational Logic Circuit


Slide Content

4.1
Under graduate (2016)
GirmaAdam (M.Tech)
Chapter Four
Combinational
logiccircuits

4.2
Topics discussed in this section:
Cont’d..
Introduction
Adders
Subtractors
Binary code conversion
Magnitude comparator
Decoders
Encoders
Multiplexers and Multiplexer tree

4.3
Introduction
Basically the digital Circuits are divided in to two broad
categories
Combinational Circuits
Sequential Circuits
A Combinational circuits consists of logical gates whose output
at any time are depending on the present combination of inputs.
A block diagram of a combinational circuit is as shown below

4.4
Cont’d..
The design of combinational circuits starts from the outline of
the problem and ends in a logical circuit diagram, or set Boolean
functions from which the logic diagram can be obtained.
The procedure involves the following steps:-
The problem is stated
The number of both input and output variables required are
determined
Both input and output variables are assigned letter symbols
Te truth table that defines the required relationships
between input and outputs are derived.

4.5
Cont’d..
The simplified Boolean function for each output is obtained.
Thelogicdiagramisdrawn.
Apracticaldesignmethodhavetoconsiderthefollowing
requirements:-
1.Minimumnumberofgates
2.Minimumnumberofinputstothegates
3.Minimumpropagationdelay
4.Minimumnumberofinterconnection
5.HighSpeedofprocessing
6.LessComplexity

4.6
ADDERS
Themostbasicarithmeticoperationistheadditionoftwobinarydigits.
Thissimpleadditionconsistoffourpossibleelementaryoperations
ACombinationalcircuitsthatperformstheadditionoftwobitsis
calledaHalf-adder.
ACombinationalcircuitsthatperformstheadditionofthree
bits(twosignificantbitsandapreviouscarry)iscalledFull-adder.

4.7
Half-adder
The half-adder can be used to add together the two least
significant bits A and B of two numbers, where there is no input
carry.
The block diagram of a half-adder is shown below

4.8
Cont,d..
Formulateatruthtabletoidentifyexactlythefunctionofthe
half-adder.
ThesimplifiedBooleanfunctionsforthetwooutputscanbe
obtaineddirectlyfromthetruthtable.
ThesimplifiedexpressionsforSandCare:-

4.9
Cont’d..

4.10
Full-adder
A half-adder has only two inputs and there is no provision to add
a carry coming from the lower order bits when multibit addition is
performed.
For this purpose, a third input terminal is added and this circuits
(full -adder) is used to add An,Bn,Cn-1.
where
Anand Bnare the n
th
order bits of the number Aand Brespectively.
Cn-1is the carry generated from the addition of (n-1) the order bits

4.11
Cont,d..
The truth table of full-adder and the k-map for simplification of
outputs Snand Cnare given below

4.12
Cont’d..
ThisimplementationusesthefollowingBooleanexpressions

4.13
Cont’d...
TheSnoutputfromthesecondhalf-adderistheexclusive-OR
ofCn-1andtheoutputofthefirsthalf-adder,giving
Carry

4.14
Cont’d...

4.15
Full-adder from half-adders

4.16
Parallel adder
Twoormorefull-addersareconnectedtoformparallelbinary
adders.
Thecarryoutputsignalfromonestagepropagatestothecarry
inputofthenextstage

4.17
Cont,d..
Example.1:-Determinethesumgeneratedbythe3-bitparallel
adderandshowtheintermediatecarrierswhenthebinary
number101and011arebeingadded?
Solution

4.18
A 4-bit parallel binary adder
Exercise1:-Showhowadderscanbeconnectedtoforman8-
bitparalleladder,andshowtheoutputbitsforthefollowing
inputbinarynumbers?10111001and10011110

4.19
Subtractors
Half-Subtractor:-alogicalcircuitforthesubtractionofB
fromA,whereAandBare1-bitnumbersisreferredtoasa
half-Subtractor.
Thetruthtableofhalf-Subtractoris:-
HereAandBaretwoinputsandD(difference)andC(borrow)
arethetwooutputs

4.20
Cont’d...
Fromthetruthtable,thelogicalexpressionforDandCare
obtained
Thelogicaldiagramofhalf-Subtractorusinggatesisshown
below

4.21
Cont’d..
Full-Subtractor:-Justlikeafull-adderwerequireafull-
Subtractorforperformingmultibitsubtraction,
Afull-Subtractorwillhavethreeinputs,An,BnandCn-1(borrow
fromthepreviousstage)andtwooutputsDn(difference)and
Cn(borrow).
ThetruthtableofFull-subtractoris:-

4.22
Cont’d..
Inputs Outputs
An Bn Cn1 Dn Cn
0 0 0 0 0
0 0 1 1 1
0 1 0 1 1
0 1 1 0 1
1 0 0 1 0
1 0 1 0 0
1 1 0 0 0
1 1 1 1 1
The truth table of full-Subtractor and the k-map for simplification of
outputs Dnand Cnare given below

4.23
Cont’d..
ThisimplementationusesthefollowingBooleanexpressions

4.24
Cont’d..
Thefull–SubtractorlogicCircuitdiagram

4.25
Binary Subtractor using 2’s complement
TheSubtrcationA–Bcanbedonebytakingthe2’s
complementofBandaddingittoAbecauseA-B=A+(-B)=
A+2’sB.
Itmeansifweusetheinverterstomake1’scomplementofB
(connectingeachBitoaninverter)andthenadd1tothe
leastsignificantbit(bysettingcarryC0to1)ofbinary
adder,thenwecanmakeabinarysubtractor.

4.26
4 bit 2’s complement Subtractor

4.27
BinaryConversion
Theavailabilityofalargevarietyofcodesforthesame
discreteelementsofinformationresultsintheuseofdifferent
codesbydifferentdigitalsystems.
Itissometimesnecessarytousetheoutputofonesystemas
inputtoanother,atthisconditionaconversioncircuitis
insertedbetweenthetwosystems,ifeachusesdifferentcodes
forthesameinformation.
Thusacodeconverterisacircuitthatmakesthetwosystems
compatibleeventhougheachsystemusesadifferentbinary
code.

4.28
Cont’d..
Thedesignprocedureofcodeconverterswillbeillustratedby
meansofaspecificexamples:-
1.BinarytoGraycodeconverter
Thetruthtableofa4-bitbinarytograycodeconverterisgiven
below:-
Binary codes Gray codes
B3 B2 B1 B0 G3 G2 G1 G0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 1
0 0 1 1 0 0 1 0

4.29
Cont’d..
Binary codes Gray codes
B3 B2 B1 B0 G3 G2 G1 G0
0 1 0 0 0 1 1 0
0 1 0 1 0 1 1 1
0 1 1 0 0 1 0 1
0 1 1 1 0 1 0 0
1 0 0 0 1 1 0 0
1 0 0 1 1 1 0 1
1 0 1 0 1 1 1 1
1 0 1 1 1 1 1 0
1 1 0 0 1 0 1 0
1 1 0 1 1 0 1 1
1 1 1 0 1 0 0 1
1 1 1 1 1 0 0 0

4.30
Cont’d..

4.31
Cont’d..
ThisimplementationusesthefollowingBooleanexpressions

4.32
Cont’d..
2.GraytoBinarycodeconverter
Thetruthtableofa4-bitGraytobinarycodeconverterisgiven
below:-
Gray codes Binary codes
G3 G2 G1 G0 B3 B2 B1 B0
0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1
0 0 1 1 0 0 1 0
0 0 1 0 0 0 1 1

4.33
Cont’d..
Gray codes Binary codes
G3 G2 G1 G0 B3 B2 B1 B0
0 1 1 0 0 1 0 0
0 1 1 1 0 1 0 1
0 1 0 1 0 1 1 0
0 1 0 0 0 1 1 1
1 1 0 0 1 0 0 0
1 1 1 1 1 0 0 1
1 1 1 0 1 0 1 0
1 0 1 0 1 0 1 1
1 0 1 1 1 1 0 0
1 0 1 1 1 1 0 1
1 0 0 1 1 1 1 0
1 0 0 0 1 1 1 1

4.34
Cont’d..

4.35
Cont’d..
ThisimplementationusesthefollowingBooleanexpressions
andlogicdiagram

4.36
Cont’d..
Exercise
1.Convertthebinarynumber0101toGraycodewith
exclusive–ORgates
2.ConverttheGraycode1011tobinarywith
exclusive–ORgates
Solution

4.37
Magnitude comparator
Amagnitudecomparatorisacombinationalcircuitthatcompares
twonumbersAandB,anddeterminestheirrelativemagnitudes.
Theoutcomeofthecomparisonisspecifiedbythreebinary
variablesthatindicatewhetherA>B,A=BorA<B.
Exclusive-ORgatecanbeusedasabasiccomparator
1.Equality
Exclusive-ORgateas1-bitcomparator

4.38
Cont’d..
Exclusive-OR gate as 2-bit comparator
The output is 1 when Ao=Bo and A1=B1,

4.39
Cont’d..
Exclusive-OR gate as 4-bit comparator
Detects one of three conditions
Only one output will be High at any one time
-A greater than B (A > B)
-A equal to B (A = B)
-A less than B (A < B)

4.40
Cont’d..
Thetwonumberswillbeequalifallpairsofsignificantdigits
areequal,thatis,A3=B3,A2=B2,A1=B1andA0=B0.
TodetermineaninequalityofbinarynumberAandB,starting
fromthemostsignificantpositionineachnumber.Thefollowing
conditionarepossible
1. If A3= 1 and B3= 0 , number A > B
2. If A3= 0 and B3= 1, number A <B
3. If A3= B3, then you must examine the next lower bit
position for an inequality.
The comparison continues until a pair of unequal digits is reached.

4.41
Cont’d..
Example:-Applyeachofthefollowingsetsofbinarynumbersto
thecomparatorcircuitanddeterminetheoutputbyfollowingthe
logicallevelsthroughthecircuit
a)10and10 b)11and10
Solution

4.42
Cont’d..
Example:-DeterminetheA=B,A>BandA<Boutputsforthe
inputnumbersshownonthecomparatorcircuit?
Solution
ThenumberAisgreaterthanB,A>Boutputishighandthe
otheroutputarelow

4.43
Designing Comparators Functionally
Onebitcomparator

4.44
Cont’d..
Designacomparatorfor2bitbinarynumbersA
(A1A0)andB(B1B0)wedothefollowingsteps:
Fora2-bitcomparatorwehavefourinputsA1A0andB1B0and
threeoutput
1.E(is1iftwonumbersareequal)
2.G(is1whenA>B)and
3.L(is1whenA<B)
Thecircuit,forcomparingtwon-Bitnumbers,has2ninputs&
2
2n
entriesinthetruthtable.
For2-Bitnumbers,4-inputs&16-rowsinthetruthtable.

4.45
Cont’d..
TruthTableof2-BitMagnitudeComparator

4.46
Cont’d..

4.47
Cont’d..

4.48
Cont’d..

4.49
Cont’d..

4.50
Combined

4.51
Decoder
Adecoderisacombinationallogiccircuitthatacceptsasetof
inputsthatrepresentsabinarynumberandactivatesonlythe
outputthatcorrespondstotheinputnumber.
Initsgeneralform,adecoderhasninputlinestohandlenbits
andformoneto2
n
outputlinestoindicatethepresenceofone
ormoren-bitcombinations.
Thedecoderpresentedherearecalledn-to-mlinedecoders
wherem≤2
n
.
ThegeneralBlockdiagramofaDecodercircuit

4.52
Cont’d..
#Thereare2
N
possibleinputcombinations,fromA
0toA
N1.
ForeachoftheseinputcombinationsonlyoneoftheMoutputs
willbeactiveHIGH(1),alltheotheroutputsareLOW(0).

4.53
Cont’d..
Thebasicbinaryfunction
Ifanactive-LOWoutput(74138,oneoftheoutputwilllowand
therestwillbehigh)isrequiredforeachdecodednumber,the
entiredecodercanbeimplementedwith
1.NANDgates
2.Inverters
Ifanactive-HIGHoutput(74139,oneoftheoutputwillhigh
andtherestwillbelow)isrequiredforeachdecodednumber,
theentiredecodercanbeimplementedwith
•ANDgates
•Inverters

4.54
Cont’d..
Example:1Decodinglogicforthebinarycode1001withan
active-HIGHoutput.
Solution

4.55
Decoder with Enable Line
Decodersusuallyhaveanenableline,
Enablingpermitsaninputsignaltopassthroughtoanoutput
Disablingblocksaninputsignalfrompassingthroughtoan
output,replacingitwithafixedvalue.
Ifenable=0,decoderisoff.Itmeansalloutputlinesare
zero
Ifenable=1,decoderisonanddependingoninput,the
correspondingoutputlineis1,allotherlinesare0

4.56
Cont’d..
Example.2:2-to-4linedecoder(withenableinput)-active
Lowoutput
Solution

4.57
Cont’d..
Forexampleifthenumberofinputisn=3thenumberofoutput
linescanbem=2
3
.Itisalsoknownas1of8becauseoneoutput
lineisselectedoutof8availablelines:
Thedecoderpresentedherearecalledn-to-mlinedecoders
wherem≤2
n

4.58
Cont’d..
Theirpurposeistogeneratethe2
n
orlessmintermsofninput
variables.
Considerthe3-to-8linedecoder,thethreeinputsare
decodedintoeightoutputs,eachoutputrepresentingoneofthe
mintermsofthe3-inputvariables.

4.59
Cont’d..
Thetruthtableofa3-to-8linedecoder

4.60
Cont’d..

4.61
Cont’d…
Thisbinaryportaddressisdecodedandtheappropriate
decoderoutputisactivatedtoenabletheI/Oport.

4.62
BCD-to-Decimal Decoder
Theelementsofinformationinthiscasearethetendecimal
digitsrepresentedbytheBCDcode.
Thecodeitselfhasfourbits
Thiswillgivesa4-to-10lineBCD–to-decimaldecoder.

4.63
Cont’d..
ThetruthtableofBCD–to-Decimaldecoder
inputs outputs
A3A2A1A0D0D1D2D3D4D5D6D7D8D9
00001000000000
00010100000000
00100010000000
00110001000000
01000000100000
01010000010000
01100000001000
01110000000100
10000000000010
10010000000001

4.64
Cont’d..

4.65
BCD-7segment decoders/drivers
Mostdigitalequipmenthassomemeansfordisplayinginformation
inaformthatcanbeunderstoodbytheuser.Thisinformationis
oftennumericaldatabutalsobealphanumeric.
Oneofthesimplestandmostpopularmethodsfordisplaying
numericaldigitsusesa7-segmentconfigurationtoformdigital
characters0to9andsometimesthehexcharactersAtoF

4.66
Cont’d..
Onecommonarrangementsuseslight-emittingdiodes(LED's)for
eachsegment.BycontrollingthecurrentthrougheachLED,some
segmentswillbelightandotherswillbedarksothatdesired
characterpatternwillbegenerated.
Therearetwotypesof7segmentLEDdisplays;
A)common-anode
B)commoncathode

4.67
Cont’d..
Incommonanode,theanodeofalloftheLEDsaretiedtogetherto
positiveofthepowersupply(V
cc)asshown

4.68
Cont’d..

4.69
Cont’d..
Example:1

4.70
Cont’d..

4.71
Cont’d..
Incommoncathode,thecathodeofalloftheLEDsaretiedtogether
topositiveofthepowersupply(V
cc)asshown

4.72
Cont’d..

4.73
Cont’d..

4.74
Cont’d..

4.75
Cont’d..
a = A + B D + C + B' D'
b = C' D' + C D + B'
c = B + C' + D
d = B' D' + C D' + B C' D + B' C + A
e = B' D' + C D’
f = A + C' D' + B D' + B C'
g = A + C D' + B C' + B' C

4.76
Cont’d..

4.77
Cont’d..

4.78
Cont’d..
Example.1.DesignandimplementalogicdiagramforaBoolean
functiongivenbyatruthtablebelowusinga3-to-8decoder
Truthtable:
Solution
Minterms:
F=m(3,5,6,7)
Implementationusingdecoder:
A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
0
1
2
3
4
5
6
7
A
B
C
2
1
0
F
Indicate MSB, LSB

4.79
Cont’d..
Example.2.CanyoudesignandimplementaBooleanFunctiongiven
belowusinga2-to-4decoderwithenableinputandanOR
gate?
Solution
Yes,Usinga2-to-4decoderwithenableinputandanORgate:
F=C(AB+A’B’)
F=C(AB+A’B’) = ABC+ A’B’C
EN

4.80
Cont’d..
Example.3.a7-segmentdecoderdrivesthedisplayinfigure
below.Ifthewaveformsgivenbelowareappliedasinput,
determinethesequenceofdigitsthatappearsonthedisplay
?
Solution

4.81
Encoder
Anencoderisacombinationallogiccircuitthatessentially
performsa‘’reverse’’processofdecoderfunction.
Encoderscanencodevarioussymbolsandalphabetic
characters.
Theprocessofconvertingfromfamiliarsymbolsornumber
toacodedformatiscalledencoding.
Anencoderacceptsanactivelevelononeofitsinputs
representingadigit,suchasadecimaloroctalandconverts
ittoacodedoutput,suchasBCDorBinary

4.82
Cont’d..

4.83
Decimal-to-BCD encoder
Adecimal-to-BCDencoder
•Inputs:10bitscorrespondingtodecimaldigits0
through9,(D
0,…,D
9)
•Outputs:4bitswithBCDcodes
•Function:IfinputbitDiisa1,thentheoutput(A
3,A
2,
A
1,A
0)istheBCDcodefori,

4.84
Cont’d..

4.85
Cont’d..
A3=D8+D9
A2=D4+D5+D6+D7
A1=D2+D3+D6+D7
A0=D1+D3+D5+D7+D9
The Boolean Equation can be :-

4.86
Multiplexer & Multiplexer tree
Itisacombinationalcircuitthatselectsbinaryinformation
fromoneoftheinputlinesanddirectsittoasingleoutputline
Usuallythereare2
n
inputlinesandnselectionlineswhosebit
combinationsdeterminewhichinputlineisselected
Dependinguponthedigitalcodeappliedattheselectorinputs
oneoutofndatasourceisselectedandtransmittedtoasingle
outputchannel.

4.87
Cont’d..

4.88
Cont’d..
MUX Types
2-to-1 (1 select line)
4-to-1 (2 select lines)
8-to-1 (3 select lines)
16-to-1 (4 select lines)

4.89
Typical Application of a MUX

4.90
Cont’d..

4.91
Cont’d..
Forexamplefor2-to-1multiplexer
1.ifselectionSiszerothenI
0hasthepathtooutputand
2.ifSisoneI
1hasthepathtooutput

4.92
Cont’d..
Truthtablefor2-to-1multiplexer
For4-to-1multiplexer

4.93
Cont’d..
Truthtablefor4-to-1multiplexer
Derivethelogicalexpressionfortheoutputintermsofthe
datainputandtheselectline
-TheoutputisequaltoDoonlyifS1=0andSo=0:Y=DoS1So
-TheoutputisequaltoD1onlyifS1=0andSo=1:Y=D1S1So
-TheoutputisequaltoD2onlyifS1=1andSo=0:Y=D2S1So
-TheoutputisequaltoD3onlyifS1=1andSo=1:Y=D3S1So

4.94
Cont’d..
TheBooleanexpressionoftheinputselected(y)
Thelogicdiagramof4-to-1multiplexer

4.95
Cont’d..
Example.1.thedatainputanddata-selectwaveformsinfigure
belowareappliedtothe4-to-1multiplexer.Determinetheoutput
waveforminrelationtotheinputs?
Solution

4.96
Multiplexer tree
Pindiagramandlogicalsymbolforthe74LS1518-inputdata
selector/multiplexer.
ALOWontheEnableinputallowstheselectedinputdatatopass
throughtotheoutput.AHIGHontheEnableinputpreventsdata
fromgoingthroughtotheoutput;i.e,itdisablesthemultiplexer.

4.97
Cont’d..
Example.1.Design16:1multiplexerusing8:1multiplexer?
Solution
Exercise.1.Design32:1multiplexerusing8:1and4:1multiplexer?

4.98
Boolean function Implementation
Themultiplexingfunctioncanconvenientlybeusedasalogic
elementinthedesignofcombinationalcircuits.
Forusingthemultiplexerasalogicelement,eitherthetruth
tableoroneofthestandardformsoflogicalexpressionmustbe
available.
Thedesignprocedureisgivenbelow
1.Identifythedecimalnumbercorrespondingtoeachminterminthe
expression.
2.Theinputlinescorrespondingtothesenumbersaretobeconnectedto
logic1level.
3.Allotherinputlinesaretobeconnectedtologicolevel.
4.Theinputsaretobeappliedtoselectinputs

4.99
Cont’d..
Example.1.Implementthelogicfunctionspecifiedintruthtable
belowbyusinga74LS1518-inputdataselector/multiplexer.
Comparethismethodwithadiscretelogicgateimplementation
SolutionY=Σm(1,3,5,6)

4.100
Cont’d..

4.101
Cont’d..
AnothermethodforimplementingBooleanfunctionisusing
multiplexer
FordoingthatassumeBooleanfunctionhasnvariables.We
havetousemultiplexerwithn-1selectionlinesand
1-firstn-1variablesoffunctionisusedfordatainput
2-theremainingsinglevariable(namedz)isusedfordata
input.
Eachdatainputcanbez,z’,1or0.Fromtruthtablewe
havetofindtherelationofFandztobeabletodesign
inputlines.

4.102
Cont’d..
Example.1.:f(A,B,C,D)=∑(1,3,4,11,12,13,14,15)
Solution

4.103
Cont’d..
Example.2.:Implementthelogicfunctionintruthtable
belowbyusing74LS1518-inputdataselector/multiplexer.
Comparethismethodwithadiscretelogicgate?

4.104
Cont’d..
Solution

4.105
Demultiplexer
Ademultiplexerbasicallyreversethemultiplexingfunction.It
takesdigitalinformationfromonelineanddistributesittoagiven
numberofoutputs.Forthisreasonthedemultiplexerisalsoknow
asdatadistributor.

4.106
Cont’d..
DEMUX Types
1-to-2 (1 select line)
1-to-4 (2 select lines)
1-to-8 (3 select lines)
1-to-16 (4 select lines)

4.107
Typical Application of a DEMUX

4.108
Cont’d..
Forexamplefor1-to-4De-Multiplexer(DEMUX)

4.109
Cont’d..
Example.1.Theserialdata-inputwaveform(datain)anddata-
selectinputs(SoandS1)areasshownbelow.Determinethedata-
outputwaveformsforthe1-to-4demultiplexer?
Solution
Tags