DNA synthesis molec DNA-replication.pptx

rohitkashyp 11 views 33 slides Oct 16, 2024
Slide 1
Slide 1 of 33
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33

About This Presentation

Describe Molecular path of replication


Slide Content

C e ntral do g ma R e pli cat i o n Transcrip t io n Tra n s l at i on PROTEIN Revers e t ranscri pt ion

DNA replication is a biological process that occurs in all living organisms and copies their exact DNA. It is the basis for biological inheritance. is the process of synthesis d a ug h t e r DNA fr o m p a r e n t a l D NA b y of the e n z y m e D NA P o l m e r ase. PPi (dNMP) dNTP - (dNMP ) D NA Le n gthe n e d DNA

D NA Replication Par e ntal s trand Daughter s tand

D NA R e pli ca ti o n • A reaction in which daughter DNAs are synthesized using the parental DNAs as the template. • • Transferring the the d e s c e nd a n t g e n e r a t i o n fidelity. R e plic a t ion to with a high P ar e n t a l DNA D a u g h t e r D NA

Three possible replication patterns: Semiconservative replication Conservative replication Dispersive replication

Aft e r one r o u n d of r eplica t ion Semi c on s ervativ e r e pli c ation (A) 0MK -< (8 ) C on se rvativ e r e pli c ation VO0MK • Di s p e r s iv e r e pli c ation

Each parent strand serves as a template for a new strand and the two new DNA s t r a n d s e a c h have one old strand and one new • € • € • • • • • e • -- • � P a r e nt stra nd s € • • e • • C �

• • • • Semi-conservative replication Bidirectional replication Semi-continuous replication High fidelity

[1958] demonstrated Semiconservative replication DNA o r treted a n d centrifuged to utitrurn n €CT dnatty grad int origin 8 al parent t no.cul M ytr@ D N A MN I4N » ct» torti-on dug h tr roe l o 3 tlco # n de 3 ten 8 tion daug h ter molecu l e L e DNA ( ' N t e Hybrid DN A

» S e m i c o n s er va t i v e R e p l i c a t i o n H alf of the pare nt a l D NA m o l ec ul e is co n se r ve d i n eac h n ew doubl e h e li x , p aire d w ith a n ew l y s yn th es i ze d co m p l e m e nt ary s tr a nd . Thi s i s ca ll e d s e mi co n s e r va ti ve re pli ca ti o n.

Bidirectional Replication • Repli ca tion s tart s from un w indin g th e d s D N A at a particular point ( c a ll e d ), f o llow e d by th e sy nth e s i s o n e a c h s trand . Th e p a r e ntal d s DN A a nd t w o n ew l y f o rm e d d s DNA form a Y - s hap e s tru c tur e c all e d •

3' 5 ' " Lea din g str and ' g r 5 ' 3' Direction o f movement o f rep li ca tion fork s ' Oka za ki • fragme n ts \_ g · 3' ' " "" 3 ' Lagging 5 · str an d

Replication Enzymes & Proteins • D NA P o l ymerase - M a t c h es th e c orr ec t nu c l e otid es th e n j o in s / pol y m e ri zes a dj ace nt nu c l e otid es to eac h o th er. • Helicase - U n w ind s th e D N A a nd m e lt s . 1t . • P rimase - P r o v i d e s a n s tart pol y meri za tion. A prim e r to

� S in g le Strand Bindin g Prot e in s - K ee p th e D N A s in g l e s trand e d a ft e r it h as b ee n m e lt e d b y h e li c a se • G y ra s e - A topi s om e r ase that R e li eves tor s ional s train in th e DNA mol ec ul e . • Li g a s e - Join s a d j a c e n t DNA s t r a n d s t o g e t h e r (fixe s " n i c k s " ) • Telomera s e - Fini s he s off the end s of s tr a nd s in Eukar y ot es DNA

DNA Polymera s e s of Prokar y ote s DNA Pol merase-1 • The first (DNA Pol -I ) was discovered in 1958 by Arthur Kornberg who received Nobel Prize in physiology & medicine 1959. in • DNA Polymerase is considered as K o r n b e r g E n z v m e .

• Later , were identified . and • All of th e m po ss e ss the biolo g ical acti v it y . following 1.5'-)3 ' Pol y m e r se acti v it y 2. E xonucl e a se activity

Exo n uc l ease f un ct i o n s 3 » 5 ' e xo nu c l ea s e a c ti v i ty exc i s e mi s mat c h e d nul eo tid e s 5 ' » 3' exo nu c l ease ac ti v i ty r e mo ves p r i m e r e x c i se mu t at e d seg m e nt or

D NA Polm e ra se - I • Mainly responsible for repairing DNA damage

D NA Pol y m e ra se - I I • T e m p o r a r i l y f un c ti on a l wh e n D NA - p o l and D NA -pol III are not functional. • Still capable for doing I • Participat es in proce ss .

DNA Polymerase - III • A he t e r o d im e r enzyme c o mpo s e d o f ten d i f f e r e nt s u b uni t s • Having the polymerization activity (10 nt/min) • T h e t r u e enzyme r e s p o n s i b l e f o r th e p r o c e ss

Structure of DNA-pol III h as 5 ' » 3 ' : p o lym e ri zi n g act i vity & : h as 3 ' » 5 ex onu c lea se ac t i v it y a nd p l ays a k ey rol e t o e n s ur e t h e r e pli c ati o n fid e li ty. () : m a intain h e t e r od im e r s tru c tu re

DNA Replication , like al l bio l ogical po l ymer i zation processes, proceeds i n t hr ee enzy m atica l ly catalyzed and coord i nated steps : init i at i on elongatio n and ter m ina t ion

D N A Rep l i cation D NA r e p l ica ti on in cl u d e s : -- i n i tiat i on -- r ep l i c at i on beg i ns at an ori gi n of replication - elongation - n e w s tr an d s o f DNA a r e sy n t hesized by DNA po l ymerase t erm i nation re p l i cat i o n is t e rm i n a t e d d i ffere n tl y i n p r o k ary o tes and euk a r y o t es

Initiation

Cont .. The separation of the two s ingle strand s of DNA creates 'fork'. a'Y' shape called a replication • • F t a $ as° " .. - • dd " Replicat i on Fork Form i ng

A Prima s e • • Al s o c alled Prim ase u s i n g t h e i s able to sy nthe s iz e primers a s the s ub s trat e and as the t e mp l ate . ar e s hort RNA fra g ment s of a nucleotide s lon g. s ev e ral

A P ri ase • • Al s o c alled Prim ase i s abl e to sy nthe s i z e primer s NTPs a s th e s ub s trate a nd u s in g free th e ssDNA a s the t e mpl a t e. a r e s hort RNA fra g m e nt s o f a seve r a l nu c l eo tid es l o n g.

l pri me r 5 5 5 5 N ew DNA DNA te m pla t e 5' 5 5 5 ! Pti mase 5' 3 R . NA ONA polym trasc 11 1

DNA replication fork l eadi n g strand 3' DNA unzips continuous 3 , 5 discontinuous okazaki fragment > ' ' lagg i ng strand s ·

3 5 ' 5 N ewly Sy nth e si z e d DNA St ra nd 3 ' } a s s ' hhhlhhhhhl ldhdlllll, Di rec t i on o f R e p li c at i o n F o r k M oveme nt O k a z a k i F ragme nt s Oka zali 'ragme n t s

ZIZIISEIEESZI3 I3L. C h romosome F ree nucleotides T DNA poly me ra s e l ead i n g s tr a n d H elicas e lagging st r and Original ( t e m p l a t e ) DN A 7 7 ! Re p li cation f o r k a Adenin e c T hymin e - Cytosin e - Gua n i n e D NA polymerase O riginal ( t e mplat e) D N A strand C ) r

Once all of the bases are matched up (A with T, C with G), an enzyme called exonuclease strips away the primer(s). The gaps where the primer(s) were are then filled by yet more complementary nucleotides .
Tags