Drude Model-Dielectric constant of metals

GandhimathiMuthuselvam 3,539 views 12 slides Nov 26, 2019
Slide 1
Slide 1 of 12
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12

About This Presentation

Frequency dependent permittivity of metals


Slide Content

Drude Model-Dielectric constant of metals
Presented
by
R. Gandhimathi

Permittivity ()and Permeability(µ)
➢Inanopticalmedium,howelectromagneticwavespropagateisdefinedbythetermscalledpermittivityandpermeability
➢I.e.Describetheinteractionsbetweentheelectromagneticwavesandmaterials0
(1)
r
re


=
=+

0
-permittivity of free space-8.85418782 ×10
-12
m
-3
kg
-1
s
4
A
2r

-relativepermittivity

e
-electricsusceptibility,whichisameasureoftheextenttowhichanappliedelectricfieldtoadielectricmaterial
causespolarization.22
0 0 0
0 1 2
()
()
ee
PEPEE
PEPPP
=+++−−−−−−
=+++−−−−
whereP(E)istheelectricdipolemomentperunitvolumeofthedielectric
P
0-constantpolarization
Permittivity()isrelatedtoelectricfield
➢()-Measurementofresistancewhichisexperiencedwheneverdevelopinganelectricalfieldinsideamedium
➢Inotherwords,isdeterminedbyhowmuchamediumcanpolarizeinresponsetoanelectricfield
➢Unit-Farads/meter

10 e
PE= Polarization is directly proportional to total electric flux density and direction
of E. Under the EM field material is polarized /magnetized.
Where 0
00
0
()
(1)
m
m
BHM
BHH
BH



=+
=+
=+ B
H
=
➢The term permeability is related to magnetic field
➢It is defined as ratio of existing magnetizing field B within the material divided by themagnetic field strengthHof the magnetizing field
WiththeappliedEMfield,Electricdisplacementcanbewrittenas0
0
0
0
(1 )
e
e
D E P
D E E
DE

  

=+
=+
=+ 0r
DE=
D-Number of flux lines crossing a surface normal to lines divided by the surface area02
4
Q
DE
r


==
Electric displacement (Without EM field)
Permeability ()0r
BH
BH


=
= m
M
H
=
Magnetic susceptibility1
rm
=+
M-Magnetization of the material

Forrealmaterialsisfunctionoffrequency,Permittivityofrealmaterialscanbewrittenintermsofcomplexnumbers( ) ( )     =+ ()
-Polarization()
-losses
Therelativepermittivity,permeabilityandrefractiveindexofamaterialaredefinedby0
1
re



= = + 0
1
rm



= = + n


=
Velocity of light 1
c

=

Drude model
➢Drudemodelrelatestheopticalandelectricpropertiesofmetalswiththebehavioroftheirfreeelectrongasdensity
➢Inmetals,valencebandisfullyfilledbyelectrons,neverthelesstheconductionbandisonlypartiallyfilled
➢Accordingtothismodel,theelectronsdonotinteractwitheachotherandarescatteredbythepositiveions
(considersonlycollisiontime&meanfreepath)
➢Thelinearresponseofthesemetalstoelectromagneticfieldisdeterminedbythedielectricfunction
Permittivity in the presence of an oscillating electric field (Without losses)
Whenfreeelectronstravelinthefieldofanelectromagneticwave,electronsexperienceaforceandtheelectron
motioninthefieldisgivenbyLorentzforce.I.e.Theforceonachargeqmovingwithvelocityvinthepresence
ofanelectricandmagneticfieldE,BiscalledtheLorentzforceandisgivenbyF qE qV B= + 
Equation of motion for an electron of the plasma sea subjected to an external electric field E() ()
2
2
, ,
e
d r dr
m e E r t e B r t
dt dt
= − −  e
m
-Mass of the electron

2
2
dr
dt -acceleration 2

002

i t ikr i t ikr
e
d r dr
m e E e e B e
dt dt
− + − +
= − −  
k-propagation constant00
[ ]
i t ikr dr
e e E B
dt
−+
= − +  2
02
it
e
dr
m e E e
dt
−
= −  dr
c
dt

since kr<<1,
The solution for the above equation is()
20
it
r t E
e
me
e



=
I.e.electronoscillatesinspacewiththefrequencyandphaseoftheexternalfield
Totalpolarizationisgivenby P=np
Dipole moment (p)

p-dipole moment of single electron = r(t).e ()
2
02
e
it
P n e r t
Ee
ne
P
m



=
=−

n-free electron gas or concentration of electron gas, 0
it
EeE
−
= 2
2
e
neP
Em
−= 0
,
e
PE=
Weknowthat0e
P
E
= 0
2
2
e
e
ne
m
=− 2
2
2
0
2
e
p
e
e
ne
m




=−
−= 2
0
p
e
ne
m


−=
Plasma frequency

p
-
Dependsmass,concentrationandchargeofcarriersandcorrespondstointernalelectrostaticoscillationsofplasma
Above
ptherealpartofthedielectricfunctionbecomespositiveandthemetalstartstobehave
likeanon-absorbingdielectricmedium
Plasmafrequencyisconsideredasmaximumfrequencyofplasmaresponse

( ) 1
e
  =+ e
 isviewedslightlydifferentinaconductivematerial,whichgivesthemodifieddielectricfunction
inmetalsas
Theelectricsusceptibility2
2
1()
p



−=
-dielectricfunctionoftheundampedfreeelectronplasma
Permittivity of electron gas is determined by 
p.
Primitivity of metals (accounting collisions of electron)
Accounting collisions of electrons with lattice, The response of a free electron of mass m
eand charge e to an external
electric field can be described as:2
02e
it
e
d r dr
m e E e
dt dt
m



= − − 
-Mean Free path time1


= Damping frequency
The damping frequency plays an important role, governing the magnitude of the resonance

()
0
()
it
e
e
mi
r t E e

  

=
+ 2
1
p
permitivity
  =− 1
()i

  
=
+ the dielectric function of the free electron gas:2
()
1
p
i



+
−= ()i−
Multiply and divide with ()
0
e
it
r t E
e
m
e



= 2
0
2
0
2
e
e
e
e
ep
ne
m
ne
m





  
=−
=−
=− 2
2
2
0
it
e
e
e
P np
ne
P
m
ne
P
Ee
E
E
m
neP
m





=
=−
=−
=− 2
2
1
pp
i
 



−+=
Total polarization
The solution for equation of motion of electrons

Re()andIm()componentsofcomplexdielectricfunctionε(ω)=ε
1(ω)+iε
2(ω)aregivenby22
2 2 2 2
1
)(
pp
i
  
 

+
++
−=
➢Re() –describes the polarization and the negative dielectric constant leads to a strong
imaginary part of the refractive index n = √ ε. Thus light can penetrate a metal only to a
very small extent
➢Im() describes the dissipation of energy associated with the motion of electrons in the
metals (radiative damping, electron gas confinement, structural imperfections, and metal
heating losses)
Model graph
➢At lower frequencies the permittivity of metals is negative. i.e. frequencies lower
than plasma frequency(
p)
➢Negative permittivity is characteristics of metals it results in higher reflectivity of
metals
➢In the vicinity of plasma frequency real part of permittivity becomes zero
➢Above plasma frequency there is no difference between metals and dielectrics

1.M. Born and E. Wolf. Principles of Optics. Cambridge University Press, Cambridge, sixth edition, 1980.
2.C.F. Bohrenand D.R. Huffman.Absorptionand scattering of light by small particles.Wileyscience paperback series.
John Wiley & Sons, Inc., New York, 1983.
3.R.E. Hummel.Optische Eigenschaften von Metallen und Legierungen.Number 22 in Reine und angewandte
Metallkunde in Einzeldarstellungen. Springer Verlag, Berlin, Heidelberg, New York, 1971.
4.J. Aukong, Electromagnetic Wave Theory, John Wiley & Sons, New York (1986).
5.P. Šolín, Partial Differential Equations and the Finite Element Method, John Wiley & Sons, New York (2006).
6.TheocarisP.S., GdoutosE.E. (1979) Electromagnetic Theory of Light. In: Matrix Theory of Photoelasticity. Springer
Series in Optical Sciences, vol 11. Springer, Berlin, Heidelberg
7.NannapaneniNarayana Rao, Fundamentals of Electromagnetics for Engineering, Pearson Education (2008)
8.Vincenzo Amendola, Roberto Pilot, Marco Frasconi, Onofrio M Maragò, Maria Antonia Iatì, J. Phys.: Condens.
Matter 29 (2017) 203002
References

Thank you
Tags