Dryers.ppt

1,003 views 68 slides Jun 25, 2023
Slide 1
Slide 1 of 68
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62
Slide 63
63
Slide 64
64
Slide 65
65
Slide 66
66
Slide 67
67
Slide 68
68

About This Presentation

Type of grain dryers


Slide Content

Lecture 8
Graindrying–principles-advantages-types-
batchandcontinuous,mixingandnonmixing–
LSUdrier–constructionandoperation-heat
sources-performanceofdryer

Drying
Graindyingistheprocesstoreducethemoisture
fromgraintoasafelevelforstorageandhandling
followingharvest.
Itisacriticalstepformaintaininggrainqualityand
minimizestorageandprocessinglosses.
Inaddition,thelongerthedesiredgrainstorage
period,thelowertherequiredgrainmoisturecontent
mustbe.
Heatandmasstransferprocess

Grains are hygroscopic –gain or lose moisture as
per atmospheric conditions
Moisture migration into or from a product is
dependent on the difference in vapour pressure
between atmosphere and product.
Moisture remains inside grains in two forms –
bound and unbound

Methods of Drying
Threebasicmethodsofdryingareusedtoday
1)sundrying,atraditionalmethodinwhichmaterials
drynaturallyinthesun
2)hotairdryinginwhichmaterialsareexposedtoa
blastofhotairand
Thefundamentalnatureofalldryingprocessistheremoval
ofvolatilesubstances(mainlymoisture)frommixtureto
yieldasolidproduct.
Ingeneraldryingisaccomplishedbythermaltechniques
andthusinvolvestheapplicationofheat,mostcommonlyby
convectionfromcurrentofair.

Throughouttheconvectivedryingofsolid
materials,twoprocessesoccursimultaneously
namely,transferofenergyfromthelocal
environmentinthedryerandtransferofmoisture
fromwithinthesolid.
Thereforethisunitoperationmaybeconsidered
assimultaneousheatandmasstransfer
operation.
Thehotair/gassuppliestheenergyrequiredfor
dryingandalsocarriesawaythemoisture
releasedbythesolid.

Drying mechanism
Twofundamentalstepsoccurduringdrying
1.Watermigrationfromgraininteriortothesurface.
2.Waterevaporationfromthesurfacetothe
surroundingair.
Water
movement

Inpaddygrain,moistureispresentattwoplaces:atthe
surfaceofthegrain,surfacemoistureandinthekernel,
internalmoisture.
Surfacemoisturewillreadilyevaporatewhengrainis
exposedtohotair.
Internalmoistureevaporatesmuchslowerbecauseit
firsthastomovefromthekerneltotheoutsidesurface.
Asaresult,surfacemoistureandinternalmoisture
evaporateatadifferentrate.
Thisdifferenceresultsinadifferentdryingrate;therate
atwhichgrainmoisturecontentdeclinesduringthe
dryingprocess.

Drying rate periods
Divided into 3 periods
Constant rate period -fruits and vegetables
First Falling rate period -grains
Second falling rate period

Constant rate period
Somecropsathighmoisturecontent(>70%)
aredriedunderconstantrateperiodattheinitial
periodofdrying.Fallingrateperiodfollows
subsequently.
Thisperiodcontinuestilltherateofevaporation
ofwaterfromthesurfaceisequaltotherateof
moisturemigrationfrominteriorofproducttoits
surface.
Criticalmoisturecontentisreached

Falling rate period
Cerealgrainsareusuallydriedentirelyunderfalling-rate
period.
Falling-rateperiodentersaftertheconstantdryingrateperiod
Itcorrespondstothedryingcyclewhereallsurfaceisno
longerwettedandthewettedsurfacecontinuallydecreases,
untilattheendofthisperiodthesurfaceisdry.
Thecauseoffallingoffintherateofdryingisduetothe
inabilityofthemoisturetobeconveyedfromthecentreofthe
bodytothesurfaceataratecomparablewiththemoisture
evaporationfromitssurfacetothesurroundings.
Thefalling-rateperiodischaracterizedbyincreasing
temperaturesbothatthesurfaceandwithinthesolid.

Firstfallingrate
Becauseofdecreaseinwetsurfaceareathe
dryingratedecreases
Asdryingproceeds,thefractionofwetsurface
decreasestozero,wherefirstfallingrateperiod
ends

Second falling rate
Subsurfaceevaporationtakesplace&itcontinues
untiltheequilibriummoisturecontentisreached
Inthiscase,evaporationtakesplacefromwithin
thesolidandthevapourreachesthesurfaceby
moleculardiffusionthroughthematerial.
Theforcescontrollingthevapourdiffusion
determinethefinalrateofdrying,andtheseare
largelyindependentoftheconditionsoutsidethe
material.

Classification of dryers
Itcanbeclassifiedbasedonmodeofoperation
suchasbatchorcontinuous.
Incaseofbatchdryerthematerialisloadedinthe
dryingequipmentanddryingproceedsforagiven
periodoftime.
Whereas,incaseofcontinuousmodethematerialis
continuouslyaddedtothedryeranddriedmaterial
continuouslyremoved.

Based on mode of heat transfer
Heat always moves from a warmer place to a cooler
place.
Heat transfers in three ways:
Conduction
Convection
Radiation

Based on movement of material
inside the dryer
Mixing type –material flows in a different path
inside the drying chamber
Non –mixing type –material flows in a straight
path

Methods of Drying
Sun drying
Mechanical drying

Traditional methods of drying
Sun Drying
Sundryingisthetraditionalpracticefordryingwheregrain
isexposedtosunandwindandisstillpreferredinAsia
becauseofitslowcostcomparedtomechanicaldrying.
Sundryinghassomelimitations:
Itisnotpossibleduringrainandatnight.
Anydelayleadstoexcessrespirationandfungalgrowth
causinglosses
Itislaborintensiveandhaslimitedcapacity.
Temperaturecontrolisdifficult.Overheatingorre-wetting
ofgrainscanresultinlowmillingqualityasaresultof
cracksdevelopinginthekernels.

Methods of sun drying
Drying of standing crops
Drying of grains on stalk
Drying of threshed grains

Drying of standing crops or Field
drying
Grainsaredriedontheplanttill
propermoisturecontentisattained.
Then,thecropisharvestedand
threshed.
Butconsiderablequantityislostdue
toshattering.
Thisdryingprocessisslowand
takesabout2-3weeksafterthe
grainshaveattainedbiological
maturity.
Mayaccumulateheatandmoisture
whichcouldcausemoldgrowth
Rapidqualityreduction

Drying of grains on stalk or Panicle
drying
Cropisharvestedathigher
moisturecontentandisleftin
thefieldtillithasdriedtoproper
moisturecontent
Anothermethodistodrythe
harvestedcroponracks
Cropisbundledandhungona
ropeexposingtothesun
Lowcapacity
Labourintensive
Unevendrying:outsidedries
faster

Drying of threshed grains or Drying
on mat or canvas
Harvestedcropathighermoisturecontentisthreshed
andthegrainsarespreadonthefloorin1to3cm
thicklayer
Continuouslystirredmanuallytillithasattainedthe
desirablemoisturecontent
Graincanbeplacedonnets,matsorcanvas
Lesscontaminatedbystonesanddirt
Easymixingandcollection
Needsmallinvestmentonmatorcanvas

Crib drying
Cobmaizecanremainhighmoisturecontent(20%)with
naturalventilation.
Maizecribactsasbothadryerandastoragestructure
Dryingratesarecontrolledbyrelativehumidityand
movingspeedofthesurroundingair

Solar Drying
Solardryingusessunenergybutisperformedinasolar
dryerdesignedandbuiltforthispurpose.
Solardryersaredevicesthatusesolarenergytodry
substances,especiallyfood.
Theinsideofthedryerislinedupwithablackabsorbing
materialorpaintedblack.
Sunlightentersanenclosedchamber(suncollector)where
itstrikesadarksurfaceconvertingitsenergytoheat.
Coldairflowsinatthebottombutthesunrayswillheatup
thedryingchamberandtheairinit.Warmairrisesupand
leavesthechamber.

Airflowisaccomplishedbyanaturaldraft(warmairrises)
whichcanbecontrolledbyadjustingvents.
Thisnaturalairflowdependsonthedifferenceinheight
(pressure)betweenfreshairintakeandhotairexhaust.
Thebiggerthedifferencethefastertheairflow.
Thesuncollectorandthedryingchambercanbe
combinedinoneunitorseparated.Whenthecollectoris
freestanding,theheatitgeneratesisdirectedintothe
dryingchamber.
Solardehydratorsmayhavebackupelectricheatingto
provideheatwhenthesunisnotaround.

Tent dryer

Advantages of solar dryer
Thehighertemperature,movementoftheairandlowerhumidity
increasestherateofdrying.
Foodisenclosedinthedryerandthereforeprotectedfromdust,
insects,birdsandanimals.
Thehighertemperaturedetersinsectsandthefasterdryingrate
reducestheriskofspoilagebymicroorganisms.
Thehigherdryingratealsogivesahigherthroughputoffoodand
asmallerdryingarea(approximatelyonethird).
Thedryersarewaterproof,therefore,thefooddoesnotneedto
bemovedduringraining.
Dryercanbeconstructedfromlocallyavailablematerialsandare
relativelylowcost.

Limiting issues with solar dryer
Canbeonlyusedduringdaytimewhenadequate
amountofsolarenergyispresent.
Lackofskilledpersonnelforoperationand
maintenance.
Lessefficiencyascomparedwithmoderntypeof
dryers.
Abackupheatingsystemisnecessaryfor
productsrequirecontinuousdrying.

Mechanical drying depends on modes of heat
transfer
Convectivedryingmethod
Heatedgaseousmedium(usuallyair)isventilated
throughamassofwetmaterialsandcarrieswithitthe
water-vapourevaporatedfromthematerial
Tosaveenergy,sometimestheexitairfromdryerisre-
circulated.
Sometimes,thepartiallydriedmaterialisre-circulatedfor
furtherdrying
Insuchsituationthesystemisknownasre-circulatory
dryer.

Thin layer drying
Processinwhichallgrainsarefullyexposedtothedryingair
underconstantdryingconditionsi.e.atconstantairtemperature
&humidity.
Upto20cmthicknessofgrainbedistakenasthinlayer
Allcommercialdryersaredesignedbasedonthinlayerdrying
principles
RepresentedbyNewton’slawbyreplacingmoisturecontentin
placeoftemperature
M-M
e/M
o-M
e= e
-Kθ
M –Moisture content at any time θ, % db
M
e-EMC, %db
M
o–Initial moisturecontent, %db
K –drying constant
θ -time, hour

Deep bed drying
Indeepbeddryingallthegrainsinthedryerarenotfully
exposedtothesameconditionofdryingair.
Theconditionofdryingairatanypointinthegrainmass
changeswithtimeandatanytimesitalsochangeswiththe
depthofthegrainbed.
Overandabovetherateofairflowperunitmassofgrainissmall
comparedtothethinlayerdryingofgrain.
Allonfarmstaticbedbatchdryersaredesignedondeepbed
dryingprinciple.

1Motor
2Panel Board
3Temperature Indicator
4Hot air outlet
5Tray
6Door
Tray or Cabinet
Dryer

Tunnel dryer
Theheateddryingairisintroducedatoneendofthetunneland
movesatanestablishedvelocitythroughtraysofproductsbeing
carriedontrucks.
Theproducttrucksaremovedthroughthetunnelatarate
requiredtomaintaintheresidencetimeneededfordehydration.
Theproductcanbemovedinthesamedirectionastheairflow
toprovideconcurrentdehydrationorthetunnelcanbeoperated
incountercurrentmanner.

Withconcurrentsystems,ahigh-moistureproductis
exposedtohightemperatureair,andevaporation
assistsinmaintaininglowerproducttemperature.
Atlocationsnearthetunnelexit,thelower-moisture
productisexposedtolower-temperatureair.
Incountercurrentsystems,alower-moistureproduct
isexposedtohigh-temperatureair,andasmaller
temperaturegradientexistsneartheproductentrance
tothetunnel.

Rotary dryer
Therotarydrierisbasicallyacylinder,inclinedslightlytothe
horizontal,whichmayberotated,ortheshellmaybestationary,
andanagitatorinsidemayrevolveslowly.
Ineithercase,thewetmaterialisfedinattheupperend,andthe
rotation,oragitation,advancesthematerialprogressivelytothe
lowerend,whereitisdischarged.
Indirect-heatrevolvingrotarydriers,hotairoramixtureofflue
gasesandairtravelsthroughthecylinder.
Thefeedrate,thespeedofrotationoragitation,thevolumeof
heatedairorgases,andtheirtemperaturearesoregulatedthat
thesolidisdriedjustbeforedischarge.

Astheshellrevolves,thesolidiscarriedupwardone-fourthofthe
circumference;itthenrollsbacktoalowerlevel,exposingfresh
surfacestotheactionoftheheatasitdoesso.
Theefficiencyisgreatlyimprovedbyplacinglongitudinalplates3or
4in.wideontheinsideofthecylinder.Thesearecalledlifting
flights.
Thesecarrypartofthesolidhalf-wayaroundthecircumferenceand
dropitthroughthewholeofadiameterinthecentralpartofthe
cylinderwheretheairishottestandleastladenwithmoisture.
Bybendingtheedgeofthelifterslightlyinward,someofthe
materialisdeliveredonlyinthethirdquarterofthecircle,producing
anearlyuniformfallofthematerialthroughoutthecrosssectionof
thecylinder.
Theheatedairstreamsthrougharainofparticles.Thisisthemost
commonformofrevolvingrotarycylinder.Ithashighcapacity,is
simpleinoperation,andiscontinuous.

Rotary dryer
Ideallysuited
for large
capacity
applications
anduneven
particlesize
distribution
Continuous
operationand
versatile
application
Lowoperating
&
maintenance

Desiccated air drying
Inthismethodofdrying,theambientairispassedthrougha
desiccatedmediumorsourcee.g.silicagel.
Thedesiccatorabsorbsmoisturefromtheair,asaresult,the
relativehumidityofairisreducedandatthesametimethereis
anincreaseinitstemperature.
Whensuchaircomesincontactwithwetgrains,transferof
moisturefromwetgrainstodryingairtakesplace.
Thedryingactionoccursduetoconvectiveheattransfer.

Fluidized bed drying
Fluidizedbeddryerconsistofasteelshellofcylindricalor
rectangularcrosssection.
Agridisprovidedinthecolumnoverwhichthewetmaterialis
rests.
Inthistypeofdryer,thedryinggasispassedthroughthebedof
solidsatavelocitysufficienttokeepthebedinafluidizedstate.
Mixingandheattransferareveryrapidinthistypeofdryers.
Sinceeverysurfaceofproductisincontactwithdryingair,
uniformdryingof'productstakesplace.

Thedryercanbeoperatedinbatchorcontinuousmode.
Fluidizedbeddryeraresuitableforgranularandcrystalline
materialsandnormallyusedforthematerialswhichhavehigh
initialmoisturecontentandarelighterandatthesametime
requirestobedriedquicklysuchasvegetableseeds.
Themainadvantageofthistypeofdryerare:rapidanduniform
heattransfer,shortdryingtime,goodcontrolofthedrying
conditions.

Incaseofrectangularfluid-beddryersseparatefluidized
compartmentsareprovidedthroughwhichthesolidsmovein
sequencefrominlettooutlet.
Theseareknownasplugflowdryers;residencetimeisalmost
thesameforallparticlesinthecompartments.
Butthedryingconditionscanbechangedfromonecompartment
toanother,andoftenthelastcompartmentisfluidizedwithcold
gastocoolthesolidbeforedischarge.

Bin dryer
On-farmgraindrying
Binisfilledwithgrainand
dryingairisforcedup
throughthegrainfroma
plenumchamberbeneathh
theperforatedfloorofthe
bin.
Thegrainonthebottomis
driedfirst.
Dryingfront-layerofdrying
grainseparatesthedried
grainfromtheundried
grain.
Thisdryingfrontprogresses
upwardthroughthebinof

Flat bed dryer
Similar to deep bed dryer except that the surface
area is more and depth is less
Capacity –1 to 2 tonnes
Designed for farm level operation
Grains are spread 0.6 to 1.2 m deep over the
perforated floor and dried.

Continuous flow dryers
Columnar type in which wet grains flow from the top
to bottom of the dryers
Types –mixing and non-mixing
If the grains flows in a straight path it is non –mixing
Grains are diverted in a zig zag manner it is mixing
type
Non –mixing : Flow rate –125 to 250 m
3
/ min-tonne
at 54
o
C
Mixing : Flow rate –50 to 95 m
3
/ min-tonne at 65
o
C

MIXING TYPE DRYER

NON -MIXING TYPE
DRYER

LSU dryer
Developed at Louisiana state university (LSU)
Continuous mixing type dryer
Developed specifically for rice to ensure gentle treatment,
good mixing & good air to grain contact
Consists of rectangular chamber, holding bin, blower with
duct, grain discharging mechanism and air heating system
Layers of inverted V shaped channels are installed in the
drying chamber; heated air is introduced through these
channels at many points
Alternate layers are air inlet & outlet channels; arranged
one below the other in an offset pattern

Contd…
Inlet port consists of few full size ports & two half size ports; all
ports are of same size arranged in equal spacing
Ribbed rollers are provided at the bottom of drying chamber for
the discharge of grain
Capacity varies from 2-12 tonnes
Recommended air flow rate is 60-70 m3/min/tonne
Air temp. are 60 &85°C for raw & parboiled paddy
Uniformly dried product can be obtained
Can be used for different types of grain
High capital investment

Recirculatory dryer
Multi pass continuous flow dryer
During each pass grains are exposed to a hot air
temperature for short time (15-30) min at a air
temp of 60-80
o
C
Between drying passes grain is stored in a
tempering bin for 4 to 24 hours

Recirculatory Batch dryer
Continuous flow non mixing type
Consists of 2 concentric circular cylinders, set 15-20 cm apart
Bucket elevator is used to feed & recirculate the grain
Centrifugal blower blows the hot air into the inner cylinder, acts as
a plenum
Grain is fed at the top of the inside cylinder; comes in contact with
a cross flow of hot air
The exhaust air comes out through perforations of the outer
cylinder
Grain is recirculated till it is dried to desired moisture content
Drying is not uniform as compared to mixing type

Recirculating Batch
Dryer Coupled with
Husk-fired Furnace
for Paddy Drying, IIT,
Kharagpur

Grain drying in bags
Used for drying small quantities
Requires large number of unskilled labourers
More space needed because bags of grains are put
on perforated racks
Hot air is forced through racks and bags
Flow rate of 4 709 m
3
/ min-bag at 45
o
C
Bags are inverted once during drying period to
accomplish drying on both sides

Method CropFlow DryingTechnology Characterization
Fielddrying Piles,racks Rapid quality reduction
SundryingBatch Drying pavements or matsCheap
Labor intensive
Typically poor milling quality
Heated air
drying
Batch Fixedbeddryer Inexpensive, small scale operation
possible
Local construction from various
materials
Operation with unskilled labor
Moisture gradient
Labor intensive
Re-circulating batch dryerMixing of grain
Large capacity range
Good quality
Skilled laborers required
Medium capital investment
After-sales service requirement
Wear of moving components
Continuous Continuousflowdryer Large capacity
Economics of scale
High capital investment
Not feasible for small batches of
different varieties
Complicated
In-Store
Drying
Batch Storage bin with aeration
components and pre-
heater for adverse weather
and nighttime
Excellent grain quality
Large capacity range
Pre-drying of high moisture grain
Risk of spoilage during power
failure

Performance of the dryer
Overall thermal efficiency = Amount of heat
utilised x 100
Amount of heat
supplied
Amount of heat utilised = (Amount of water
vapour removed, kg) x (Latent heat of
evaporation, kcal/kg)
Amount of heat supplied = (Amount of fuel, kg) x
(Net calorific value of fuel, kcal/kg)

Heat utilisation factor (HUF)
The utilisation factor of a drying system is the ratio
of drop in temperature of drying air by drying
process and increase in the temperature of
ambient air by heating
HUF = t
2–t
3
t
2–t
1
t1 = temperature of ambient air ,
o
C
t2 = temperature of hot air,
o
C
t3 = temperature of exit air,
o
C