Suppose, the eigenfunction of APP
1-
is
y
with
eigenvalue k.
Then,
kyAPyP =
-1
Ü Þ
kPyPkyAPy ==
Therefore,
xPy= and k must be equal to l. Therefore
the eigenvalues of A and APP
1-
are identical and the
eigenvector of one is a linear mapping of the other
one.
If the eigenvalues of A, n
,...,,lll
21 are all distinct
then there exists a similarity transformation such that
ú
ú
ú
ú
ú
ú
û
ù
ê
ê
ê
ê
ê
ê
ë
é
==
-
n
..
........
..
..
..
DAPP
l
l
l
l
000
0
000
000
000
3
2
1
1
Let the eigenvectors of A be
)n()i()()(
x,...x,...,x,x
21
such that we have
)i(
i
)i(
xAxl=
Then the matrix [ ]
)n()()(
x,...,x,xP
21
=
Then [ ]
)n()()(
Ax,...,Ax,AxAP
21
=
[ ]
)n(
n
)()(
x,...,x,x lll
2
2
1
1
=
[ ][ ]
)n(
n
)()()n()()(
e,...,e,ex,...,x,x lll
2
2
1
1
21
=
PD=
Therefore, DAPP =
-1
Also, note the following. If A is symmetric, then