Ejemplo de clase control estadístico de la calidad

1,947 views 62 slides Jan 27, 2022
Slide 1
Slide 1 of 62
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27
Slide 28
28
Slide 29
29
Slide 30
30
Slide 31
31
Slide 32
32
Slide 33
33
Slide 34
34
Slide 35
35
Slide 36
36
Slide 37
37
Slide 38
38
Slide 39
39
Slide 40
40
Slide 41
41
Slide 42
42
Slide 43
43
Slide 44
44
Slide 45
45
Slide 46
46
Slide 47
47
Slide 48
48
Slide 49
49
Slide 50
50
Slide 51
51
Slide 52
52
Slide 53
53
Slide 54
54
Slide 55
55
Slide 56
56
Slide 57
57
Slide 58
58
Slide 59
59
Slide 60
60
Slide 61
61
Slide 62
62

About This Presentation

control de calidad


Slide Content

EJEMPLO DE CLASE
CONTROL ESTADÍSTICO DE LA
CALIDAD

Ejemplo 1
Gráfica X
Calculando la desviación
estándar
GRÁFICAS DE CONTROL POR
VARIABLES

Para Gráfica x cuando se conoce s
Límite superior de control (LSC) = x + zs
x
Donde x = media de las medias muestrales o el valor
meta establecido en el proceso
z = número de desviaciones estándar
s
x = desviación estándar de las medias
muestrales = s/ n
s = desviación estándar de la población
n = tamaño de la muestra
Límite inferior de control (LIC) = x - zs
x

Ejemplo 1 Cajas de Avena
Los pesos de las cajas de hojuelas de avena incluidas
dentro de un lote de producción grande se muestrean
cada hora. Los administradores quieren establecer límites
de control que incluyan el 99.73% de las medias
muestrales.

Se seleccionar y pesan en onzas de manera aleatoria
nueve cajas cada hora. A continuación se presentan los
datos de las nueve cajas seleccionadas en la primera
hora. La desviación estándar es de 3.










Tomado y adaptado del libro de Texto Principios de Administración de Operaiones
Heizer,y Render, Séptima edición

MEDICIÓN DE LAS VARIABLES
Muestra 1 2 3 4 5 6 7 8 9
1 16.10 16.30 16.00 16.20 16.10 15.90 16.00 16.30 16.00
2 16.80 16.90 16.70 16.30 17.00 16.80 16.90 17.00 16.80
3 15.00 15.90 15.80 15.70 15.80 15.70 15.30 15.20 15.10
4 16.80 16.50 16.80 16.80 16.80 16.20 16.50 16.10 16.00
5 16.10 16.80 16.80 16.50 16.80 16.20 16.50 16.80 16.00
6 16.20 16.30 16.50 16.90 16.80 16.30 16.50 16.10 16.00
7 15.20 15.40 15.40 15.20 15.00 15.00 15.30 15.20 15.10
8 16.90 16.30 16.30 16.40 16.80 16.30 16.50 16.10 16.00
9 16.40 16.30 16.50 16.20 16.30 16.30 16.50 16.20 16.00
10 14.70 14.80 14.70 14.90 14.70 14.90 14.90 14.90 14.70
11 14.20 14.40 14.40 14.20 14.00 14.00 14.30 14.20 14.10
12 17.40 17.30 17.50 17.20 17.30 17.30 17.50 17.20 17.00

Muestra 1 2 3 4 5 6 7 8 9
x
1 16.10 16.30 16.00 16.20 16.10 15.90 16.00 16.30 16.00
16.10
2 16.80 16.90 16.70 16.30 17.00 16.80 16.90 17.00 16.80
3 15.00 15.90 15.80 15.70 15.80 15.70 15.30 15.20 15.10
4 16.80 16.50 16.80 16.80 16.80 16.20 16.50 16.10 16.00
5 16.10 16.80 16.80 16.50 16.80 16.20 16.50 16.80 16.00
6 16.20 16.30 16.50 16.90 16.80 16.30 16.50 16.10 16.00
7 15.20 15.40 15.40 15.20 15.00 15.00 15.30 15.20 15.10
8 16.90 16.30 16.30 16.40 16.80 16.30 16.50 16.10 16.00
9 16.40 16.30 16.50 16.20 16.30 16.30 16.50 16.20 16.00
10 14.70 14.80 14.70 14.90 14.70 14.90 14.90 14.90 14.70
11 14.20 14.40 14.40 14.20 14.00 14.00 14.30 14.20 14.10
12 17.40 17.30 17.50 17.20 17.30 17.30 17.50 17.20 17.00
MEDICIÓN DE LAS VARIABLES
Se saca el promedio
de cada una de las
observaciones
realizadas

MEDICIÓN DE LAS VARIABLES
Muestra 1 2 3 4 5 6 7 8 9 x
1 16.10 16.30 16.00 16.20 16.10 15.90 16.00 16.30 16.00 16.10
2 16.80 16.90 16.70 16.30 17.00 16.80 16.90 17.00 16.80 16.80
3 15.00 15.90 15.80 15.70 15.80 15.70 15.30 15.20 15.10 15.50
4 16.80 16.50 16.80 16.80 16.80 16.20 16.50 16.10 16.00 16.50
5 16.10 16.80 16.80 16.50 16.80 16.20 16.50 16.80 16.00 16.50
6 16.20 16.30 16.50 16.90 16.80 16.30 16.50 16.10 16.00 16.40
7 15.20 15.40 15.40 15.20 15.00 15.00 15.30 15.20 15.10 15.20
8 16.90 16.30 16.30 16.40 16.80 16.30 16.50 16.10 16.00 16.40
9 16.40 16.30 16.50 16.20 16.30 16.30 16.50 16.20 16.00 16.30
10 14.70 14.80 14.70 14.90 14.70 14.90 14.90 14.90 14.70 14.80
11 14.20 14.40 14.40 14.20 14.00 14.00 14.30 14.20 14.10 14.20
12 17.40 17.30 17.50 17.20 17.30 17.30 17.50 17.20 17.00 17.30
192.00

Cálculo de la Media de las
Medias


192/12 = 16 onzas

CÁLCULO DE LA DESVIACIÓN
ESTÁNDAR
Desviación Estándar de la Población:



Si se trabaja con menos de 30 elementos (de cada
muestra) se trabaja con n-1, de esta manera:

Muestra 1 2 3 4 5 6 7 8 9
x
(x-x)²
1 16.10 16.30 16.00 16.20 16.10 15.90 16.00 16.30 16.00
16.10 0.01000
2 16.80 16.90 16.70 16.30 17.00 16.80 16.90 17.00 16.80
16.80
3 15.00 15.90 15.80 15.70 15.80 15.70 15.30 15.20 15.10
15.50
4 16.80 16.50 16.80 16.80 16.80 16.20 16.50 16.10 16.00
16.50
5 16.10 16.80 16.80 16.50 16.80 16.20 16.50 16.80 16.00
16.50
6 16.20 16.30 16.50 16.90 16.80 16.30 16.50 16.10 16.00
16.40
7 15.20 15.40 15.40 15.20 15.00 15.00 15.30 15.20 15.10
15.20
8 16.90 16.30 16.30 16.40 16.80 16.30 16.50 16.10 16.00
16.40
9 16.40 16.30 16.50 16.20 16.30 16.30 16.50 16.20 16.00
16.30
10 14.70 14.80 14.70 14.90 14.70 14.90 14.90 14.90 14.70
14.80
11 14.20 14.40 14.40 14.20 14.00 14.00 14.30 14.20 14.10
14.20
12 17.40 17.30 17.50 17.20 17.30 17.30 17.50 17.20 17.00
17.30
192.00
MEDICIÓN DE LAS VARIABLES
Se hace la operación de
a la media se le resta la
media de las medias y
se eleva al cuadrado

MEDICIÓN DE LAS VARIABLES
Muestra 1 2 3 4 5 6 7 8 9
x
(x-x)²
1 16.10 16.30 16.00 16.20 16.10 15.90 16.00 16.30 16.00
16.10 0.01000
2 16.80 16.90 16.70 16.30 17.00 16.80 16.90 17.00 16.80
16.80 0.64000
3 15.00 15.90 15.80 15.70 15.80 15.70 15.30 15.20 15.10
15.50 0.25000
4 16.80 16.50 16.80 16.80 16.80 16.20 16.50 16.10 16.00
16.50 0.25000
5 16.10 16.80 16.80 16.50 16.80 16.20 16.50 16.80 16.00
16.50 0.25000
6 16.20 16.30 16.50 16.90 16.80 16.30 16.50 16.10 16.00
16.40 0.16000
7 15.20 15.40 15.40 15.20 15.00 15.00 15.30 15.20 15.10
15.20 0.64000
8 16.90 16.30 16.30 16.40 16.80 16.30 16.50 16.10 16.00
16.40 0.16000
9 16.40 16.30 16.50 16.20 16.30 16.30 16.50 16.20 16.00
16.30 0.09000
10 14.70 14.80 14.70 14.90 14.70 14.90 14.90 14.90 14.70
14.80 1.44000
11 14.20 14.40 14.40 14.20 14.00 14.00 14.30 14.20 14.10
14.20 3.24000
12 17.40 17.30 17.50 17.20 17.30 17.30 17.50 17.20 17.00
17.30 1.69000
192.00 8.82000

CÁLCULO DE LA DESVIACIÓN
ESTÁNDAR
onzas
8.82 =
9-1
s =
1.05 s =

LSC = 17.11 onzas
LIC = 14.88863 onzas
z = número de desviaciones estándar (1 para el 68% de confianza, 2 para el
95.45% de confianza y 3 para el 99.73% de confianza)
LSC = 16+(3)(1.05/√8)
LIC = 16-(3)(1.05/√8)
LSC = 16+(3)(0.37123106)
LIC = 16 - (3)(0.37123106)
Límite Inferior de Control
Límite Superior de Control

14,00
14,50
15,00
15,50
16,00
16,50
17,00
17,50
1 2 3 4 5 6 7 8 9101112
Onzas

Gráfica de Control Cajas de Avena
x
LSC
LIC
x
Número de muestra

Ejemplo 2
Gráficas X y R
Cuando no se conoce o es difícil
de calcular la desviación
estándar

Ejemplo 2 Refresco Super Cola
Las botellas de refresco Super Cola tienen una
etiqueta que dice “peso neto 12 onzas”. Se
tomaron 12 muestras de 5 botellas cada una.
Encuentre el rango promedio del proceso y el
promedio global del proceso. El equipo de
administración de operaciones quiere determinar
los límites de control inferior y superior para los
promedios de este proceso. Trabaje con 3
desviaciones estándar. A continuación se le
presentan los datos de las muestras. Tome en
cuenta que la desviación estándar no se conoce.
Tomado y adaptado del libro de Texto Principios de Administración de Operaiones
Heizer,y Render, Séptima edición

Límites de Control de Calidad
por Variables para Rango

•LCS = D4 * R
•LCI = D3 * R

Tamaño de la muestra
(n)
Factor para LCS y LCI
para gráfica X (A
2)
Factor para LCS para
gráfica R (D
4)
Factor para LCI para
gráfica R (D
3)
2 1.880 3.268 0
3 1.023 2.574 0
4 0.729 2.282 0
5 0.577 2.115 0
6 0.483 2.004 0
7 0.419 1.924 0.076
8 0.373 1.864 0.136
9 0.337 1.816 0.184
10 0.308 1.777 0.223
12 0.266 1.716 0.284

medida en onzas
#Muestra/ Observaciones 1 2 3 4 5
1 12.05 12.17 12.05 12.05 12.10
2 11.90 11.94 11.94 11.90 12.00
3 12.02 12.20 12.01 12.02 12.09
4 12.00 12.00 11.98 12.05 11.98
5 12.01 12.03 12.00 11.90 12.00
6 12.03 12.50 12.00 12.03 12.50
7 11.80 12.00 11.90 11.80 12.20
8 12.00 12.00 11.90 12.00 12.00
9 12.03 12.05 12.00 12.03 12.00
10 12.22 12.00 11.90 12.22 12.00
11 12.50 12.00 12.00 12.50 12.40
12 11.98 12.40 11.97 11.98 12.50
Sumatorias

medida en onzas
#Muestra/ Observaciones 1 2 3 4 5
_
X
1 12.05 12.17 12.05 12.05 12.10 12.08
2 11.90 11.94 11.94 11.90 12.00
3 12.02 12.20 12.01 12.02 12.09
4 12.00 12.00 11.98 12.05 11.98
5 12.01 12.03 12.00 11.90 12.00
6 12.03 12.50 12.00 12.03 12.50
7 11.80 12.00 11.90 11.80 12.20
8 12.00 12.00 11.90 12.00 12.00
9 12.03 12.05 12.00 12.03 12.00
10 12.22 12.00 11.90 12.22 12.00
11 12.50 12.00 12.00 12.50 12.40
12 11.98 12.40 11.97 11.98 12.50
Sumatorias
Se saca el promedio
de cada una de las
observaciones
realizadas

medida en onzas
#Muestra/
Observaciones 1 2 3 4 5
_
X
1 12.05 12.17 12.05 12.05 12.10 12.08
2 11.90 11.94 11.94 11.90 12.00 11.94
3 12.02 12.20 12.01 12.02 12.09 12.07
4 12.00 12.00 11.98 12.05 11.98 12.00
5 12.01 12.03 12.00 11.90 12.00 11.99
6 12.03 12.50 12.00 12.03 12.50 12.21
7 11.80 12.00 11.90 11.80 12.20 11.94
8 12.00 12.00 11.90 12.00 12.00 11.98
9 12.03 12.05 12.00 12.03 12.00 12.02
10 12.22 12.00 11.90 12.22 12.00 12.07
11 12.50 12.00 12.00 12.50 12.40 12.28
12 11.98 12.40 11.97 11.98 12.50 12.17
Sumatorias 144.75

medida en onzas
#Muestra/
Observaciones 1 2 3 4 5
_
X
_
R
1 12.05 12.17 12.05 12.05 12.10 12.08 0.12
2 11.90 11.94 11.94 11.90 12.00 11.94
3 12.02 12.20 12.01 12.02 12.09 12.07
4 12.00 12.00 11.98 12.05 11.98 12.00
5 12.01 12.03 12.00 11.90 12.00 11.99
6 12.03 12.50 12.00 12.03 12.50 12.21
7 11.80 12.00 11.90 11.80 12.20 11.94
8 12.00 12.00 11.90 12.00 12.00 11.98
9 12.03 12.05 12.00 12.03 12.00 12.02
10 12.22 12.00 11.90 12.22 12.00 12.07
11 12.50 12.00 12.00 12.50 12.40 12.28
12 11.98 12.40 11.97 11.98 12.50 12.17
Sumatorias 144.75
Se calcula: del valor mayor
restar el valor menor.
Ejemplo: 12.17-12.05=0.12

medida en onzas
#Muestra/ Observaciones 1 2 3 4 5
_
X
_
R
1 12.05 12.17 12.05 12.05 12.10 12.08 0.12
2 11.90 11.94 11.94 11.90 12.00 11.94 0.10
3 12.02 12.20 12.01 12.02 12.09 12.07 0.19
4 12.00 12.00 11.98 12.05 11.98 12.00 0.07
5 12.01 12.03 12.00 11.90 12.00 11.99 0.13
6 12.03 12.50 12.00 12.03 12.50 12.21 0.50
7 11.80 12.00 11.90 11.80 12.20 11.94 0.40
8 12.00 12.00 11.90 12.00 12.00 11.98 0.10
9 12.03 12.05 12.00 12.03 12.00 12.02 0.05
10 12.22 12.00 11.90 12.22 12.00 12.07 0.32
11 12.50 12.00 12.00 12.50 12.40 12.28 0.50
12 11.98 12.40 11.97 11.98 12.50 12.17 0.53
Sumatorias 144.75 3.01

Cálculo de la Media de las
Medias


144.75/12 = 12.0625 onzas

Cálculo de Rango Promedio

R = 3.01/12 = 0.25083 onzas

Límites de Control de Calidad
por Variables para Rango
•LCS = D4 * R
•LCI = D3 * R

Tamaño de la muestra
(n)
Factor para LCS y LCI
para gráfica X (A
2)
Factor para LCS para
gráfica R (D
4)
Factor para LCI para
gráfica R (D
3)
2 1.880 3.268 0
3 1.023 2.574 0
4 0.729 2.282 0
5 0.577 2.115 0
6 0.483 2.004 0
7 0.419 1.924 0.076
8 0.373 1.864 0.136
9 0.337 1.816 0.184
10 0.308 1.777 0.223
12 0.266 1.716 0.284
Se busca en la tabla el valor
que corresponde a n = 5, en
la columna de: Factor para
LCS para gráfica R (D
4)

Límites de Control de Calidad
por Variables para Rango
•LCS = D4 * R
•LCI = D3 * R

Tamaño de la muestra
(n)
Factor para LCS y LCI
para gráfica X (A
2)
Factor para LCS para
gráfica R (D
4)
Factor para LCI para
gráfica R (D
3)
2 1.880 3.268 0
3 1.023 2.574 0
4 0.729 2.282 0
5 0.577 2.115 0
6 0.483 2.004 0
7 0.419 1.924 0.076
8 0.373 1.864 0.136
9 0.337 1.816 0.184
10 0.308 1.777 0.223
12 0.266 1.716 0.284
Se busca en la tabla el valor
que corresponde a n = 5, en
la columna de: Factor para
LCS para gráfica R (D
3)

Límites de Control de Calidad
por Variables para Rango

•LCS = D4 * R
•LCS = 2.115 * 0.25083 =
0.5305 onzas

•LCI = D3* R
•LCI = 0 * 0.25083 =
0 onzas

0,00
0,10
0,20
0,30
0,40
0,50
0,60
1 3 5 7 9 11
Milímetros

Número de muestra
Gráfica R, Botellas de refresco Super Cola
R LSCR

Límites de Control de Calidad
por Variables

•LSC = 12.062 + (0.577 * 0.250833)
•LSC = 12.21 onzas

•LIC = 12.062 – (0.577 * 0.250833)
•LIC = 11.92 onzas

11,70
11,80
11,90
12,00
12,10
12,20
12,30
12,40
1 3 5 7 9 11
Milímetros

Número de muestra
Gráfica X Botellas de refresco Super Cola
X
LSC
LIC

Ejemplo 3
Gráfica p
GRÁFICAS DE CONTROL POR
ATRIBUTOS

Ejemplo 3 Gráfica p
Tomado y adaptado del libro de Texto Principios de Administración de Operaiones
Heizer,y Render, Séptima edición
Los digitadores de Dossier Data System introducen miles
de registros de seguros cada día para una variedad de
clientes corporativos. La directora general, quiere
establecer limites que incluyan el 99.73% de la variación
aleatoria en el proceso de introducción de datos cuando se
encuentra bajo control.
Se han recopilado muestras del trabajo de 20 digitadores.
Se examinaron cuidadosamente 100 registros por cada
empleado, estableciendo el número de errores. Los datos
se presentan a continuación.

No. De Muestra

Errores
1 6
2 5
3 0
4 1
5 4
6 2
7 5
8 3
9 3
10 2
11 6
12 1
13 8
14 7
15 5
16 4
17 11
18 3
19 0
20 4
80

No. De Muestra

Errores
_
P
1 6 0.06
2 5
3 0
4 1
5 4
6 2
7 5
8 3
9 3
10 2
11 6
12 1
13 8
14 7
15 5
16 4
17 11
18 3
19 0
20 4
80
Se divide
6/100 = 0.06

No. De Muestra

Errores
_
P
1 6 0.06
2 5 0.05
3 0 0.00
4 1 0.01
5 4 0.04
6 2 0.02
7 5 0.05
8 3 0.03
9 3 0.03
10 2 0.02
11 6 0.06
12 1 0.01
13 8 0.08
14 7 0.07
15 5 0.05
16 4 0.04
17 11 0.11
18 3 0.03
19 0 0.00
20 4 0.04
80 0.80

_
Límite Superior de Calidad (LSC) = p + z δp
_
Límite Inferior de Calidad (LIC) = p - z δp

_ _
Desviación estándar δp = p (1 - p)
n

p (1 - p)
n – 1
z = número de desviaciones estándar (1 para el 68% de confianza, 2 para el 95.45% de
confianza y 3 para el 99.73% de confianza)

p = Σ(x/n)
n
= 0.80 / 20= .04 errores en registros

= 4 % errores en registros
p = Σx
N
= 80/ 2000
= 0.04 errores en registros

= 4% errores en registros

(0.04) * (1- 0.04)
100
sp =
0.0196 =
1.96% errores en digitación

LSC = 0.0988
LIC = 0.00% errores en digitación
z = número de desviaciones estándar (1 para el 68% de confianza, 2 para el
95.45% de confianza y 3 para el 99.73% de confianza)
LSC = 0.04 + (3)(0.0196)
LIC = 0.04 - (3)(0.0196)
LSC = 9.88% errores en digitación
LIC = -0.0188
Límite inferior de control
Límite superior de control

0,00
0,02
0,04
0,06
0,08
0,10
0,12
1 3 5 7 91113151719
Proporción de errores

Número de muestra
Gráfica de control de calidad, errores en digitación
p
LSCp
LICp
p

Ejemplo 4
Gráfica c
GRÁFICAS DE CONTROL
POR ATRIBUTOS

Ejemplo gráfica c
La compañía de taxis Red Top recibe varias
quejas al día sobre el comportamiento de
sus conductores. Durante un período de 9
días (donde los días son la unidad de
medida) el propietario recibió los siguientes
números de llamadas de pasajeros
molestos: 3, 0, 8, 9, 6, 7, 4, 9, 8 para un
total de 54 quejas. Trabaje con un límite de
control del 99.73% de confianza.
Tomado y adaptado del libro de Texto Principios de Administración de Operaiones
Heizer,y Render, Séptima edición

Límite Superior de Calidad (LSC) = c + z c


Límite Inferior de Calidad (LIC) = c - z c

Desviación estándar δc = c

Muestra
1 2 3 4 5 6 7 8 9
Total
Cantidad
de quejas
3 0 8 9 6 7 4 9 8
54

= 54/ 9 c
6 quejas promedio al día

LSC= 6 + (3) √6
LIC= 6 - (3) √6
LIC= 0 quejas
LSC= 13.35 quejas
LIC= -1.35 quejas
Límite Inferior de Control
Límite Superior de Control

0
2
4
6
8
10
12
14
16
1 2 3 4 5 6 7 8 9
N
úmero

de
errores

o no
conformidades

Número de muestra
Gráfica de control de calidad, Quejas sobre el
servicio en Taxi
Número de
defecto
c
LSCc

Índice de habilidad del
proceso
Ejemplo 5

Cpk=
Límite de especificación - X
Superior
X - Límite de especificación
inferior
3σ 3σ
,

Ejemplo 5 Índice de
habilidad del proceso
Usted es el gerente de mejoras de proceso y ha
desarrollado una nueva máquina para cortar las plantillas
destinadas a la mejor línea de zapatos deportivos de la
compañía. Está emocionado porque la meta de la
compañía es de nomas de 3.4 defectos por millón y esta
máquina pareece ser la innovación que usted necesita.
Las plantillas no pueden superar en mas de ±0.001
pulgadas el grosor requerido de 0.250 pulgadas. Usted
desea saber si debe reemplazar la máquina existente, que
tiene un Cpk de 1.0. Trabaje con una desviación estándar
de 0.0005 pulgadas
Tomado y adaptado del libro de Texto Principios de Administración de Operaiones
Heizer,y Render, Séptima edición

Límite de
Especificación = 0.250 + 0.001 = 0.251
superior

Límite de
Especificación = 0.250 - 0.001 = 0.249
superior

Cpk = 0.251-0.250 , 0.250 – 0.249
3(0.0005) 3(0.0005)
Cpk = 0.001 0.001
0.0015 0.0015
Cpk = 0.67
Cpk=
Límite de especificación - X
Superior
X - Límite de especificación
inferior
3σ 3σ
,
Como la nueva máquina tiene un Cpk de 0.67 y la anterior
tenia un Cpk de 1, no debe de reemplazar la máquina
existente.

Ejemplo 6
MUESTREO DE
ACEPTACIÓN

Ejemplo 6 Muestreo de
Aceptación
Un banco del sistema local no realizaba inspecciones de control
de calidad de los artículos que compra a los proveedores, sino
que acepta la palabra de los vendedores a quienes les compra en
relación a la calidad de los productos. Sin embargo, últimamente
ha tenido algunas experiencias desfavorables con la calidad de
los artículos comprados y quiere preparar planes de muestreo
para uso del departamento de proveeduría.
Para el artículo particular boletas para depósito, el banco ha
establecido un porcentaje de tolerancia de defectos de a lo más
10%. La imprenta proveedora del artículo, a la que el banco le
compra, tiene en su instalación de producción un nivel de
aceptación de calidad de 3% para las boletas. El banco tiene un
riesgo para el consumidor de 10% y la imprenta un riesgo para el
productor de 5% o menos.

Imprenta proveedora de boleta para depósitos (Riesgo del productor)
Nivel de aceptable de calidad del proveedor -NAC- ………. 3% = 0.03
Riesgo del productor(alfa)…………………………..…5% = 0.05 o menos
Banco local que compra las boletas para depósito (Riesgo del consumidor)
Porcentaje de tolerancia de defectos del lote del comprador –PTDL- ……. 10% = 0.10
o menos
Riesgo del consumidor (beta)…………………….…………… no más 10% = 0.10

Establecer PTDL o LTPD / NAC o AQL
c= 10/3 = 3.33

Buscar en la columna 2 de la tabla la razón que sea igual o
un poco mayor a la cantidad, para este caso = 3.33
c
LPTD (PTDL) /
AQL(NAC)
n
*AQL(NAC)
c
LPTD (PTDL) /
AQL(NAC)
n
*AQL(NAC)
0 44.890 0.052 5 3.549 2.613
1 10.946 0.355 6 3.206 3.286
2 6.509 0.818 7 2.957 3.981
3 4.890 1.366 8 2.768 4.695
4 4.057 1.970 9 2.618 5.426
Para este caso
es igual a 3.549

En la fila del valor 3.549, trasladarse a la columna 1, para el
dato de c
c
LPTD (PTDL) /
AQL(NAC)
n
*AQL(NAC)
c
LPTD (PTDL) /
AQL(NAC)
n
*AQL(NAC)
0 44.890 0.052 5 3.549 2.613
1 10.946 0.355 6 3.206 3.286
2 6.509 0.818 7 2.957 3.981
3 4.890 1.366 8 2.768 4.695
4 4.057 1.970 9 2.618 5.426
Para este caso
c= 5

Buscar en la columna 3 de la tabla el valor de c:
n *AQL(NAC
c
LPTD (PTDL) /
AQL(NAC)
n
*AQL(NAC)
c
LPTD (PTDL) /
AQL(NAC)
n
*AQL(NAC)
0 44.890 0.052 5 3.549 2.613
1 10.946 0.355 6 3.206 3.286
2 6.509 0.818 7 2.957 3.981
3 4.890 1.366 8 2.768 4.695
4 4.057 1.970 9 2.618 5.426
Para este caso = 2.613

Se divide este dato encontrado en la columna
3 (2.613) entre NAC o AQL para obtener n
n = 2.613/0.03
n = 87.1 n = 87
Respuesta: El número de unidades de la
muestra debe ser de 87 boletas de depósito,
y c o sea el número de aceptación igual a 5.
Cinco es el número máximo de boletas defectuosas
que pueden encontrarse en una muestra de 87
elementos antes de rechazar el pedido.
Tags