ejercicios de mecánica de fluidos de viscosidad y capilaridad
Size: 217.9 KB
Language: es
Added: Aug 26, 2015
Slides: 7 pages
Slide Content
Universidad Tecnologica de Bolivar
Facultad de Ingeniería
Mecánica de Fluidos
1P - 2015
Ejercicios de
Viscosidad y Capilaridad
Deimer Castro Lopez
Jose Roberto sierra Salcedo
Rodrigo Alfonso blanco campo
Maria crisrina herrera
Grupo 00
Profesor:
Alfredo Miguel Abuchar
28 de febrero de 2015
1
Mecánica de uidos Ejercicios
Desarrollo de los ejercicios
1. Ejercicios de viscosidad
1. 20 cm a 1 m/s a través de
una capa de aceite de 3.6 mm de espesor, que está entre dos placas, una estacionaria y la otra
moviéndose a una velocidad constante de 0.3 m/s, como se muestra en la gura. La viscosidad
dinámica del aceite es de 0.027 Pa.s. Suponiendo que la velocidad en cada una de las capas de
aceite varía en forma lineal, a) trace la gráca del perl de velocidad y encuentre el lugar en
donde la velocidad del aceite es cero y b) determine la fuerza que se necesita aplicar sobre la
placa para mantener este movimiento.
a) Por semejanza de triangulos tenemos:
x
1
=
y
0;3
!y= 0;3(x)
x+y= 2;6mm
x+ 0;3x= 2;6!x(1 + 0;3) = 2;6
x=
2;6
1 + 0;3
=
2;6
1;3
x= 2mm
y= 0;3(2)!y= 0;6mm
Facultad de Ingeniería 2 de
Mecánica de uidos Ejercicios
b) La fuerza F es igual a la suma de una fuerzaFv1(superior) mas la fuerzaFv2(inferior)
+
!
X
F= 0)FFv1Fv2= 0
F=Fv1+Fv2
V1= 1m=s;V2= 0;3m=s
h1= 1mm;h2= 2;6mm
L= 5;6mm
= 0;027Pa:s
=
V
L
;=
F
A
F
A
=
V
L
;L=h
F=
V A
h
Fv1=
(0;027Pa:s)(1m=s)(0;20;2)
110
3
m
Fv1= 1;08N
Fv2=
(0;027Pa:s)(1m=s)(0;20;2)
210
3
m
Fv1= 0;54N
Entonces la fuerza F viene dada por:
F=Fv1+Fv2= 1;08N+ 0;54N
F= 1;62N
Facultad de Ingeniería 3 de
Mecánica de uidos Ejercicios
2. 30 cm20 cm que pesa 150 N a una velocidad constante
de 0.8 m/s sobre una supercie inclinada con un coeciente de fricción de 0.27. a) Determine
la fuerza F necesaria a aplicar en la dirección horizontal. b) Si se aplica una película de aceite
de 0.4 mm de espesor, con una viscosidad dinámica de 0.012 Pa.s entre el bloque y la supercie
inclinada, determine el porcentaje de reducción en la fuerza necesaria.
X
Fx= 0!FNsinfrcos= 0 (1)
X
Fy= 0!NcosfrsinW= 0 (2)
fr=N (3)
Sustituyendo (3) en (2) y despejando N
NcosNsenW= 0
N=
W
cos 20
o
sin 20
o
=
150N
cos 20
o
(0;27) sin 20
o
= 177;02N
Remplazando en la ecuación (3):
fr= (0;27)(177;03N)!fr= 47;8N
Remplazando en la ecuación (1), obtenemos que:
F=Nsin+frcos= 0
F= (177;02N) sin 20
o
+ (47;8N) cos 20
o
F= 105;46N
Facultad de Ingeniería 4 de
Mecánica de uidos Ejercicios
b) Ahora aplicando una pelicula de aceite de 0.4 mm de espesor:
X
Fx= 0!F2N2sinFv1cos= 0 (4)
X
Fy= 0!N2cosFv1sinW= 0 (5)
=
F
A
!Fv1=
V A
h
Fv1=
(0;012N:s=m
2
)(0;50;2m
2
)(0;4m=s)
0;0004m
Fv1= 2;4N
Usando la ecuacion (5):
N2cosFv1sinW= 0
N2=
Fv1sin+W
cos
=
(2;4N) sin 20
o
+ 150N
cos
= 160;50N
Sustituyendo en la ecuación (4) nos queda:
F2=Fv1cos 20
o
+N2sin 20
o
= (2;4N) cos 20
o
+ (160;50N) sin 20
o
F2= 57;15N
Entonces el porcentaje de reducción en la fuerza es de:
FF2
F
100 % =
105;4657;15
105;46
100 % = 45;8 %
Facultad de Ingeniería 5 de
Mecánica de uidos Ejercicios
3.
céntricos de 75 cm de largo. El diámetro exterior del cilindro interior es de 15 cm y la brecha
entre los dos cilindros es de 0.12 cm. Se hace girar el cilindro interior a 200 rpm y se mide que
el par de torsión es de 0.8 N m. Determine la viscosidad del uido.
=
fl
Av
=
Tl
Ariv
=
Tl
ri(2riL)wri
=
Tl
2Lwr
3
i
=
(0;8N:m)(0;1210
2
m)
2(0;75m)(20;94rad=seg)(0;075m)
3
= 0;023Pa:s
= 0;0231Pa:s
Facultad de Ingeniería 6 de
Mecánica de uidos Ejercicios
2. Ejercicios de capilaridad
1.
o
C. Determine el ascenso
por capilaridad del agua en el tubo.
h=
2s
gR
cos=
2
0;071
N
m
1000
kg
m
2
9;81
m
s
2
(410
4
m)
cos 0
o
= 0;036m
h= 3;6cm
2.
de 20
o
C.
d = 2 mm
T = 20
0
C
P0=Patmos:
s= 0;075
N
m
P = ?
P=P1P0=
4s
R
=
4
0;075
N
m
0;02m
= 15
N
m
2
P= 15Pa
3.
tubos, en parte debido al efecto de capilaridad. Determine hasta qué altura ascenderá la solución
acuosa en un árbol, en un tubo cuyo diámetro mide 0.005 mm, como resultado del efecto de
capilaridad. Trate la solución como agua a 20
o
C con un ángulo de contacto de 15
o
.
d = 0.005 mm
H2O a20
o
C
= 15
o
s= 0;073
N
m
y = 1000
kg
m
3
h = ?
h=
2
gR
cos=
2