Ejercicios resueltos

camilacmoncada 9,144 views 12 slides Jun 10, 2014
Slide 1
Slide 1 of 12
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12

About This Presentation

No description available for this slideshow.


Slide Content

PROBLEMAS RESUELTOS

50° 70º+x X R S Q 140° 2X X + (X+70) + 50° = 180° X = 30° Por ángulo semi-inscrito PQS Problema Nº 01 RESOLUCIÓN P Reemplazando: En el triángulo PQS: Resolviendo la ecuación: PSQ = x Se traza la cuerda SQ Desde un punto “P” exterior a una circunferencia se trazan la tangente PQ y la secante PRS, si el arco RS mide 140º y el ángulo QPS mide 50º. Calcule la medida del ángulo PSQ.

20° 70° X X = 40° R Q H En el triángulo rectángulo RHS 140° Es propiedad, que: 140° + X = 180° Por ángulo inscrito Problema Nº 02 RESOLUCIÓN P S m  S = 70º Resolviendo: PSQ = x mQR = 140° Desde un punto “P” exterior a una circunferencia se trazan la tangentes PQ y PR, luego en el mayor arco QR se ubica un punto “S”, se traza RH perpendicular a la cuerda QS, si m HRS=20º; calcule la mQPR.

x 130° A C B D X = 40° 50° Problema Nº 03 RESOLUCIÓN P Resolviendo: APD = x Medida del ángulo interior Medida del ángulo exterior mBC = 50° Desde un punto “P” exterior a una circunferencia se trazan las secantes PBA y PCD tal que las cuerdas AC y BD sean perpendiculares entre sí; calcule la medida del ángulo APD, si el arco AD mide 130º.

Calcular la medida del ángulo “x” Problema Nº 07 B A X P 130º Resolución

RESOLUCIÓN B A X P 130º C Medida del ángulo inscrito : En la circunferencia: 260º Por la propiedad del ángulo exterior formado por dos tangentes: X = 80º mAB = 260º mACB = 100º mACB + x = 100º 260º + mACB = 360º

Calcule el perímetro del triángulo ABC. Problema Nº 08 2 5 5 A B C Resolución

Teorema de Poncelet : a + b = 10 + 2(2) Luego el perímetro: (2p) = a + b + 10 = 14 + 10 (2p) = 24 RESOLUCIÓN 2 5 5 A B C a b a + b = 14 (1) (2) Reemplazando (1) en (2) (2p) = 14 + 10

X PLANTEAMIENTO Q R S 80º P a a Problema Nº 09 Desde un punto “P” exterior a una circunferencia se trazan la tangente PQ y la secante PRS de modo que los arcos SQ y SR sean congruentes. Si el arco QR mide 80º, calcular m  QPR . Resolución

2a + 80º = 360º a = 140º Medida del ángulo exterior: X = 30º En la circunferencia: RESOLUCIÓN X Q R S 80º P a a

P Q R S 2 3 PLANTEAMIENTO Problema Nº 10 En un cuadrilátero ABCD m  Q = m  S = 90º se traza la diagonal PR. Los inradios de los triángulos PQR y PRS miden 3cm y 2cm respectivamente. Si el perímetro del cuadrilátero PQRS es 22cm. Calcule la longitud de PR Resolución

Teorema de Poncelet: a b c d PQR  a + b = PR+2(3) + a +b + c + d = 2PR + 10 PR = 6cm Dato: a + b + c + d = 22cm PSR  c + d = PR+2(2) 22 = 2PR + 10 RESOLUCIÓN P Q R S 2 3
Tags