Ejercicios resueltos por método de tres momentos (resistencia de materiales)

70,360 views 27 slides May 10, 2017
Slide 1
Slide 1 of 27
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18
Slide 19
19
Slide 20
20
Slide 21
21
Slide 22
22
Slide 23
23
Slide 24
24
Slide 25
25
Slide 26
26
Slide 27
27

About This Presentation

EJERCICIOS RESUELTOS POR EL MÉTODO DE TRES MOMENTOS


Slide Content

Universidad Nacional San Cristóbal de Huamanga
Facultad de Ingeníeria Minas , Geología y Civil
Escuela de Ingeniería Civil
PROBLEMAS RESUELTOS DE
RESISTENCIA DE MATERIALES
I - II
Autor:
Calderón Quispe, Gilmer
( [email protected],[email protected] )
Estudiante de Ingeniería Civil Gilmer Calderón Quispe

Capítulo
3
Método de tres Momentos
3.1 DeniciónCG CG
L
1 L
2
I
1 I
2
A B C
m
1 n
1
m
2 n
2
MA

L1
I1

2MB

L1
I1

L2
I2

MC

L2
I2

6

A1m1
L1I1

A2n2
L2I2

6E

BA
L1

BC
L2

Ecuación 1Ec. los 3 momentos
Para em marco mostrado en la gura, por el método de tres momentos calcular
1.
2.
Problema N°1
5 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos
3.2I
6m 2m
2m
2m
2000kgf/m
2000kgf-m
4000kgf
2m
3I
2I
h=9000
1
A B
C
D
A B C D
-
+
-
+
+
4877.934
7122.066
2873.239
7122.066
2285.211
5633.803
6732.394
2986.258
2760.563
1619.718
1809.859
2760.563
968.258
+
-
-
+
ejercio N° 1
continuacion Ejercicio 1
V
M
(Kgf.m)
(Kgf)
2I
3m 2m
2m
2m
2000kgf/m
2000kgf-m
4000kgf
2m
3I
2I
A B C
D
4877.934 Kgf 9995.305 Kgf
2285.211 Kgf
2873.239 Kgf
1714.789 Kgf
1619.718 Kgf.m
D
A1
2
3
lh36000A2A31000A48000
De la gura (a) aplicando la ecuación de los tres momentos
Solución:2I
6m 2m
2m
2m
2000kgf/m
2000kgf-m
4000kgf
2m
3I
2I
h=9000
1
A B
C
D
A B C D
-
+
-
+
+
4877.934
7122.066
2873.239
7122.066
2285.211
5633.803
6732.394
2986.258
2760.563
1619.718
1809.859
2760.563
968.258
+
-
-
+
ejercio N° 1
continuacion Ejercicio 1
V
M
(Kgf.m)
(Kgf)
2I
3m 2m
2m
2m
2000kgf/m
2000kgf-m
4000kgf
2m
3I
2I
A B C
D
4877.934 Kgf 9995.305 Kgf
2285.211 Kgf
2873.239 Kgf
1714.789 Kgf
1619.718 Kgf.m
D
MA

6
2

2MB

6
2

4
3

MC

4
3

6

36000p3q
62

1000
43

1
3
p2q 2


1000
43

2
3
p2q

MB

4
3

2MC

4
3

4
2

MD

4
2

6

1000
43

2
3
p2q


1000
43

1
3
p2q 2


8000
24
p2q

MC

4
2

2MD

4
2
0

MEp0q 6

8000
24
p2q

Resistencia de Materiales I-II
pagina 6 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos
Para:MAME0
8:667MB1:333MC 54666:667 (I)
1:333MB6:667MC2MD12666:667 (II)
2MC4MD 12000 (III)
Resolviendo (I) ,(II)y (III)
MB 6732:394Kgm M C2760:563Kgm MD1619:718Kgm
Hallando las cortantes isostáticas
AB:
"
VAB6000
VBA 6000
BC:
"
VBC500
VCB500
CD:
"
VCD 2000
VDC2000
Factor de corrección de las cortantes
C1
0 p6732:394q
6
1122:066C2
6732:3942760:563
4
2373:239
C3
2760:563 p1619:781q
4
285:211
Hallando las cortantes nales
VVisotC
VAB60001122:0664877:934Kgf V BA 60001122:066 7122:066Kgf
VBC5002373:2392873:239Kgf V CB5002373:2392873:239Kgf
VCD 2000285:211 2285:211Kgf VDC2000285:2111714:789Kgf
Hallando momento ector máximo(Donde la cortante es cero)
enx6mñMmaxpq6732:394Kgm2I
3m 2m
2m
2m
2000kgf/m
2000kgf-m
4000kgf
2m
3I
2I
h=9000
1
A B
C
D
A B C D
-
+
-
+
+
4877.934
7122.066
2873.239
7122.066
2285.211
5633.803
6732.394
2986.258
2760.563
1619.718
1809.859
2760.563
968.258
+
-
-
+
ejercio N° 1
continuacion Ejercicio 1
V
M
(Kgf.m)
(Kgf)
Resistencia de Materiales I-II
pagina 7 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos2I
3m 2m
2m
2m
2000kgf/m
2000kgf-m
4000kgf
2m
3I
2I
h =9000
1
A B
C
D
A B C D
-
+
-
+
+
4877.934
7122.066
2873.239
7122.066
2285.211
5633.803
6732.394
2986.258
2760.563
1619.718
1809.859
2760.563
968.258
+
-
-
+
ejercio N° 1
continuacion Ejercicio 1
V
M
(Kgf.m)
(Kgf) 2I
3m 2m
2m
2m
2000kgf/m
2000kgf-m
4000kgf
2m
3I
2I
h=9000
1
A B
C
D
A B C D
-
+
-
+
+
4877.934
7122.066
2873.239
7122.066
2285.211
5633.803
6732.394
2986.258
2760.563
1619.718
1809.859
2760.563
968.258
+
-
-
+
ejercio N° 1
continuacion Ejercicio 1
V
M
(Kgf.m)
(Kgf)
2I
3m 2m
2m
2m
2000kgf/m
2000kgf-m
4000kgf
2m
3I
2I
A B
C
D
4877.934 Kgf 9995.305 Kgf
2285.211 Kgf
2873.239 Kgf
1714.789 Kgf
1619.718 Kgf.m
MAB
2EI
30
p2AB0q 266:667íMAB0:0667EIB266:667
MAB
2EI
30
p2AB0q 266:667
Resolver la viga sabiendo que el apoyo B sufrió un asentamiento de12mm, considerar
I80x10
7
mm
4
yE200KN{mm
2Problema N°2Resistencia de Materiales I-II
pagina 8 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos80KN
60KN
20KN/m
26KN/m
3m 3m 4m 2m 3m
3m 2m 7/8m
A B C D
305.295
245.295
165.295
105.295
150.842
254.842
100.704
40.704
743.923
487.847
328.521
122.113
+
-
+
-
+
-
M
P
W
aw
W
wb
x
y
x
y
M
P
a
b
c
d
e
f
p
q
A
C D B
2m 2m 2m 2m
26KN/m
2KN/m 2KN/m
5KN-m 5KN-m
A
C D B
2m 2m 2m 2m
2KN/m 2KN/m
5KN-m 5KN-m
4KN 4KN
80KN
60KN
20KN/m
26KN/m
A
B
C D
A1360 ;A2
2
3
p6q p90q 360 ;A3138:667 ;A4180Solución:80KN
60KN
20KN/m
26KN/m
3m 3m 4m 2m 3m
3m 2m 7/8m
A B C D
305.295
245.295
165.295
105.295
150.842
254.842
100.704
40.704
743.923
487.847
328.521
122.113
+
-
+
-
+
-
M
P
W
aw
W
wb
x
y
x
y
M
P
a
b
c
d
e
f
p
q
A
C D B
2m 2m 2m 2m
26KN/m
2KN/m 2KN/m
5KN-m 5KN-m
A
C D B
2m 2m 2m 2m
2KN/m 2KN/m
5KN-m 5KN-m
4KN 4KN
80KN
60KN
20KN/m
26KN/m
A
B
C D
M0p0q 2MA

0
6
2I

MB

6
2I

6

0
360p3q
62I

360p3q
62I

6E

0
1210
3
6

6MA3MB 6

360p3q
62

360p3q
62

6EI

1210
3
6

6MA3MB 3000 :::::::::::::::::::::::::::::::::::::::::::::(I)
MA

6
2I

2MB

6
2I

4
I

MC

4
I

6

360p3q
62I

360p3q
62I

138:667p2q
4I


6E

1210
3
6

1210
3
4

3MA14MB4MC3304::::::::::::::::::::::::::::::::::::::::::::pIIq
MB

4
I

2MC

4
I

5
I

MD

5
I

6

138:667p2q
4I

180p8{3q
5I

6E

1210
3
4

4MB18MC 3872 ::::::::::::::::::::::::::::::::::::::::::::::::pIIIq
Resolviendo las ecuacionespIq;pIIqypIIIq
MA 743:923KN:m M B487:847KN:m M C 323:521KN:m
Hallando las cortantes isostáticas
AB:
#
VAB100
VBA 100
BC:
#
VBC52
VCB 52
CD:
#
VCD36
VDC 24
pKNq
Resistencia de Materiales I-II
pagina 9 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos
Hallando las correcciones
Ci
MizqMder
L
C1 205:295KN C2202:842KN C3 64:704KN
Cortantes nales
VAB305:295KN VBC 150:842KN VCD100:704KN
VBA105:295KN VCB 254:842KN VDC40:704KN80KN
60KN
20KN/m
26KN/m
3m 3m 4m 2m 3m
3m 2m 7/8m
A B C D
305.295
245.295
165.295
105.295
150.842
254.842
100.704
40.704
743.923
487.847
328.521
122.113
+
-
+
-
+
-
M
P
W
aw
W
wb
x
y
x
y
M
P
a
b
c
d
e
f
p
q
A
C D B
2m 2m 2m 2m
26KN/m
2KN/m 2KN/m
5KN-m 5KN-m
A
C D B
2m 2m 2m 2m
2KN/m 2KN/m
5KN-m 5KN-m
4KN 4KN
80KN
60KN
20KN/m
26KN/m
A
B
C D
M
(KN.m)
V
(KN)
Resolver la viga mostrada en la que los asentamientos de los apoyos son enA10mm
,enC65mm, enE40mmy enG25mm E200Gpa,I500x10
6
mm
4Problema N°3Resistencia de Materiales I-II
pagina 10 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos10
15.536
19.464
21.698
18.302
50
89.286
55.357
105.357
27.678
175 100
10ft
-
+
-
-
-
+ +
-
-
-
+
+
V
(K)
M
(K.ft)
A B E F
G
DC
120KN 120KN
150KN
I 2I I
6m 4m 6m 4m 4m 4m
A
1 A
2
A
3 A
4
A
5
288 288
300
6m 4m 6m 4m 4m 4m
A C E
G
A B E F
G
DC
120KN 120KN
150KN
I 2I I
6m 4m 6m 4m 4m 4m
45.877KN 100.504KN 198.296KN 45.323KN
45.877
26.381
104.677
45.323
93.619
74.123
21.230
237.417
275.262
137.289
181.291
300
288
288
+
+
+
-
-
-
-
+
+ +
V
(KN)
M
(KN.m)
50KN 50KN
30KN
A
B C
2m 3m 2m
1.5m
2.5m
Viga: 300mmx400mm
colum: 300mmx500mm
2
E=20KN/mm
A
B
B
C
C
30KN
1.5m
2.5m
50KN 50KN
30KN
A
B C
2m 3m 2m
1.5m
2.5m
56.7KN
121.97KN.m30KN
43.3KN
A1
1
2
p6q p288q 864 ;A2576 ;A3864 ;A4576 ;A51200 ;Solución:10
15.536
19.464
21.698
18.302
50
89.286
55.357
105.357
27.678
175 100
10ft
-
+
-
-
-
+ +
-
-
-
+
+
V
(K)
M
(K.ft)
A B E F
G
DC
120KN 120KN
150KN
I 2I I
6m 4m 6m 4m 4m 4m
A
1 A
2
A
3 A
4
A
5
288 288
300
6m 4m 6m 4m 4m 4m
A C E
G
A B E F
G
DC
120KN 120KN
150KN
I 2I I
6m 4m 6m 4m 4m 4m
45.877KN 100.504KN 198.296KN 45.323KN
45.877
26.381
104.677
45.323
93.619
74.123
21.230
237.417
275.262
137.289
181.291
300
288
288
+
+
+
-
-
-
-
+
+ +
V
(KN)
M
(KN.m)
50KN 50KN
30KN
A
B C
2m 3m 2m
1.5m
2.5m
Viga: 300mmx400mm
colum: 300mmx500mm
2
E=20KN/mm
A
B
B
C
C
30KN
1.5m
2.5m
50KN 50KN
30KN
A
B C
2m 3m 2m
1.5m
2.5m
56.7KN
121.97KN.m30KN
43.3KN
MA

10
I

2MC

10
I

10
2I

ME

10
2I

6

864
10I

2
3
p6q


576
10I

6
1
3
p4q


864
10p2Iq

4
1
3
p6q


576
10p2Iq

2
3
p4q

6E

0:0650:01
10

0:0650:04
10

MA0
30MC5ME 1824:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::piq
MC

10
2I

2ME

10
2I

8
I

MG

8
I

6

864
10p2Iq

2
3
p6q


576
10p2Iq

6
4
3


1200
8I
p4q

6E

0:040:065
10

0:040:025
8

5MC26ME 6279::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::piiq
Resolviendo las ecuaciones (i) y (ii)
MC 21:230 ;ME 237:417 ;MAMG0rKN:ms
Calculando las cortantes isostaticas
AB:
"
VAC48
VCA 72
CE:
"
VCE48
VEC 72
EG:
"
VEG75
VGE 75
rKNs
Calculo de las correcciones
C1
0 p21:230q
10
2:123 ;C2
21:230 p237:417q
10
21:619
C3
237:4170
8
29:677rKNs
Resistencia de Materiales I-II
pagina 11 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos
Fuerzas cortantes nales
VAC482:12345:877 VCE4821:61926:381
VCA 722:123 74:123 VEC 7221:619 93:619
VEG75 p29:677q 104:667VGE 75 p29:667q 45:323rKNs10
15.536
19.464
21.698
18.302
50
89.286
55.357
105.357
27.678
175 100
10ft
-
+
-
-
-
+ +
-
-
-
+
+
V
(K)
M
(K.ft)
A B E F
G
DC
120KN 120KN
150KN
I 2I I
6m 4m 6m 4m 4m 4m
A
1 A
2
A
3 A
4
A
5
288 288
300
6m 4m 6m 4m 4m 4m
A C E
G
A B E F
G
DC
120KN 120KN
150KN
I 2I I
6m 4m 6m 4m 4m 4m
45.877KN 100.504KN 198.296KN 45.323KN
45.877
26.381
104.677
45.323
93.619
74.123
21.230
237.417
275.262
137.289
181.291
300
288
288
+
+
+
-
-
-
-
+
+ +
V
(KN)
M
(KN.m)
50KN 50KN
30KN
A
B C
2m 3m 2m
1.5m
2.5m
Viga: 300mmx400mm
colum: 300mmx500mm
2
E=20KN/mm
A
B
B
C
C
30KN
1.5m
2.5m
50KN 50KN
30KN
A
B C
2m 3m 2m
1.5m
2.5m
56.7KN
121.97KN.m30KN
43.3KN 10
15.536
19.464
21.698
18.302
50
89.286
55.357
105.357
27.678
175 100
10ft
-
+
-
-
-
+ +
-
-
-
+
+
V
(K)
M
(K.ft)
A B E F
G
DC
120KN 120KN
150KN
I 2I I
6m 4m 6m 4m 4m 4m
A
1 A
2
A
3 A
4
A
5
288 288
300
6m 4m 6m 4m 4m 4m
A C E
G
A B E F
G
DC
120KN 120KN
150KN
I 2I I
6m 4m 6m 4m 4m 4m
45.877KN 100.504KN 198.296KN 45.323KN
45.877
26.381
104.677
45.323
93.619
74.123
21.230
237.417
275.262
137.289
181.291
300
288
288
+
+
+
-
-
-
-
+
+ +
V
(KN)
M
(KN.m)
50KN 50KN
30KN
A
B C
2m 3m 2m
1.5m
2.5m
Viga: 300mmx400mm
colum: 300mmx500mm
2
E=20KN/mm
A
B
B
C
C
30KN
1.5m
2.5m
50KN 50KN
30KN
A
B C
2m 3m 2m
1.5m
2.5m
56.7KN
121.97KN.m30KN
43.3KN
Aplicando el teorema de los tres momentos hallar:
1.
2.
3.
4.
Problema N°4Resistencia de Materiales I-II
pagina 12 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos
5.
6. 30x50cm
2
yE2x10
6
MPacalcule la deformacion de
esta.A B C D E
F
G
2.5T
10T.m
3T/m
I 2I
I
2I
2I I
4m 2m 2m 5m 2m
5m
3m
0.507T.m
0.38T
0.189T
2.779T
0.676T
0.676T.m
2.222T 6.665T
1.668T
0.487T
0.812T.m
0.507
1.015
3.99
1.353
7.276
2.724
6
4.142
0.812
0.676
1.623
-
+
-
+
+
-
-
-
0.38
0.487
4.067
1.57
0.665
6
0.676
+
+
-
+
-
-
-
V
(T)
M
(T.m)
2.5
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
A
0A B C D
A
1
A
2
A
3
8
16
45
2m 2m 6m 6m
A
B
C DB
C D
8KN
2m
2m
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
7.46KN
8KN
14.174KN.m
25.507KN
41.957KN
-
+
8
7.464
34.493
25.507
7.46
26.956
1.826
17.826
31.522
14.174
45
18
-
-
-
+
+
+
+
-
-
+
V
(KN)
M
(KN.m)
N
(KN)
3m
A1
1
2
p4q p8q 16A2
1
2
p6q p16q 48A3
2
3
p6q p45qSolución:A B C D E
F
G
2.5T
10T.m
3T/m
I 2I
I
2I
2I I
4m 2m 2m 5m 2m
5m
3m
0.507T.m
0.38T
0.189T
2.779T
0.676T
0.676T.m
2.222T 6.665T
1.668T
0.487T
0.812T.m
0.507
1.015
3.99
1.353
7.276
2.724
6
4.142
0.812
0.676
1.623
-
+
-
+
+
-
-
-
0.38
0.487
4.067
1.57
0.665
6
0.676
+
+
-
+
-
-
-
V
(T)
M
(T.m)
2.5
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
A
0A B C D
A
1
A
2
A
3
8
16
45
2m 2m 6m 6m
A
B
C DB
C D
8KN
2m
2m
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
7.46KN
8KN
14.174KN.m
25.507KN
41.957KN
-
+
8
7.464
34.493
25.507
7.46
26.956
1.826
17.826
31.522
14.174
45
18
-
-
-
+
+
+
+
-
-
+
V
(KN)
M
(KN.m)
N
(KN)
3m A B C D E
F
G
2.5T
10T.m
3T/m
I 2I
I
2I
2I I
4m 2m 2m 5m 2m
5m
3m
0.507T.m
0.38T
0.189T
2.779T
0.676T
0.676T.m
2.222T 6.665T
1.668T
0.487T
0.812T.m
0.507
1.015
3.99
1.353
7.276
2.724
6
4.142
0.812
0.676
1.623
-
+
-
+
+
-
-
-
0.38
0.487
4.067
1.57
0.665
6
0.676
+
+
-
+
-
-
-
V
(T)
M
(T.m)
2.5
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
A
0A B C D
A
1
A
2
A
3
8
16
45
2m 2m 6m 6m
A
B
C DB
C D
8KN
2m
2m
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
7.46KN
8KN
14.174KN.m
25.507KN
41.957KN
-
+
8
7.464
34.493
25.507
7.46
26.956
1.826
17.826
31.522
14.174
45
18
-
-
-
+
+
+
+
-
-
+
V
(KN)
M
(KN.m)
N
(KN)
3m Resistencia de Materiales I-II
pagina 13 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos
MA0p0q 2MA

0
4
I

MB

4
I

6

0
16p2q
4I

6E

0
0
4

8MA4MB1:5EI 48 (i)
MA

4
I

2MB

4
I

6
I

MC

6
I

6

16p2q
4I

48p4q
6I

6E


4
0

4MA20MB6MC1:5EI 240 (ii)
MB

6
I

2MC

6
I

6
I

MD

6
I

6

48p2q
6I

180p3q
6I

6MB24MC 636 (iii)
De la gura se observa
VA8KN
Haciendo equilibrio
MAMBVAp4q 160

1
4
pMAMB16q VA

1
4
pMAMB16q 8
MAMB 16 (iv)
Resolviendo las ecuaciones
MA 14:174 ;MB1:826 ;MC 26:956rKN:msEI38:725

KN m
3

Cálculo de las cortantes isostaticas
AB:
"
VAB4
VBA 4
;BC:
"
VBC2:667
VCB 2:667
;CD:
"
VCD30
VDC 30
rKNs
Cálculo de las correcciones
C1
14:1741:826
4
4C2
1:826 p26:956q
6
4:797 ;C3
26:956
6
4:493
Cortantes nales
VAB4 p4q 8
VBA 4 p4q 0
VBC 2:6674:797 7:464
VCB 2:6674:797 7:464
VCD30 p4:493q 34:493
VDC 30 p4:493q 25:507rKNs
Resistencia de Materiales I-II
pagina 14 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos
Hallando desplazamiento
IC
30p50q
3
12
312500cm
4
E2x10
6
MPa0:2x10
6KN
L
cm
2
EI38:725

38:725x10
6
312500x0:2x10
6
0:0006196cmA B C D E
F
G
2.5T
10T.m
3T/m
I 2I
I
2I
2I I
4m 2m 2m 5m 2m
5m
3m
0.507T.m
0.38T
0.189T
2.779T
0.676T
0.676T.m
2.222T 6.665T
1.668T
0.487T
0.812T.m
0.507
1.015
3.99
1.353
7.276
2.724
6
4.142
0.812
0.676
1.623
-
+
-
+
+
-
-
-
0.38
0.487
4.067
1.57
0.665
6
0.676
+
+
-
+
-
-
-
V
(T)
M
(T.m)
2.5
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
A
0A B C D
A
1
A
2
A
3
8
16
45
2m 2m 6m 6m
A
B
C DB
C D
8KN
2m
2m
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
7.46KN
8KN
14.174KN.m
25.507KN
41.957KN
-
+
8
7.464
34.493
25.507
7.46
26.956
1.826
17.826
31.522
14.174
45
18
-
-
-
+
+
+
+
-
-
+
V
(KN)
M
(KN.m)
N
(KN)
3m A B C D E
F
G
2.5T
10T.m
3T/m
I 2I
I
2I
2I I
4m 2m 2m 5m 2m
5m
3m
0.507T.m
0.38T
0.189T
2.779T
0.676T
0.676T.m
2.222T 6.665T
1.668T
0.487T
0.812T.m
0.507
1.015
3.99
1.353
7.276
2.724
6
4.142
0.812
0.676
1.623
-
+
-
+
+
-
-
-
0.38
0.487
4.067
1.57
0.665
6
0.676
+
+
-
+
-
-
-
V
(T)
M
(T.m)
2.5
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
A
0A B C D
A
1
A
2
A
3
8
16
45
2m 2m 6m 6m
A
B
C DB
C D
8KN
2m
2m
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
7.46KN
8KN
14.174KN.m
25.507KN
41.957KN
-
+
8
7.464
34.493
25.507
7.46
26.956
1.826
17.826
31.522
14.174
45
18
-
-
-
+
+
+
+
-
-
+
V
(KN)
M
(KN.m)
N
(KN)
3m
Resistencia de Materiales I-II
pagina 15 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres MomentosA B C D E
F
G
2.5T
10T.m
3T/m
I 2I
I
2I
2I I
4m 2m 2m 5m 2m
5m
3m
0.507T.m
0.38T
0.189T
2.779T
0.676T
0.676T.m
2.222T 6.665T
1.668T
0.487T
0.812T.m
0.507
1.015
3.99
1.353
7.276
2.724
6
4.142
0.812
0.676
1.623
-
+
-
+
+
-
-
-
0.38
0.487
4.067
1.57
0.665
6
0.676
+
+
-
+
-
-
-
V
(T)
M
(T.m)
2.5
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
A
0A B C D
A
1
A
2
A
3
8
16
45
2m 2m 6m 6m
A
B
C DB
C D
8KN
2m
2m
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
7.46KN
8KN
14.174KN.m
25.507KN
41.957KN
-
+
8
7.464
34.493
25.507
7.46
26.956
1.826
17.826
31.522
14.174
45
18
-
-
-
+
+
+
+
-
-
+
V
(KN)
M
(KN.m)
N
(KN)
3m
Resolver la estructura mostrada utilizando la ecuación de los tres momentos.5000kgf
3m 2m
3m
A
B
C D
A
B
C D
B
C
3m
2m
5000kgf
3m 2m
3m
A
B
C D
1055.195kgf
2288.961kgf.m
535.714kgf
3944.805kgf
535.714kgf
5405.844kgf.m
1055.195
535.714
3944.805
2288.961
876.623
2483.766
2483.766
5405.844
876.623
+
+
-
-
-
-
+
V
(Kgf)
M
(Kgf.m)
5000kgf
3m 2m
3m
A
B
C D
A
B
C D
B
C
3m
2m
5000kgf
3m 2m
3m
A
B
C D
1055.195kgf
2288.961kgf.m
535.714kgf
3944.805kgf
535.714kgf
5405.844kgf.m
535.714
535.714
-
3944.805
-
-
N
(Kgf )
Problema N°5Solución:5000kgf
3m 2m
3m
A
B
C D
A
B
C D
B
C
3m
2m
5000kgf
3m 2m
3m
A
B
C D
1055.195kgf
2288.961kgf.m
535.714kgf
3944.805kgf
535.714kgf
5405.844kgf.m
1055.195
535.714
3944.805
2288.961
876.623
2483.766
2483.766
5405.844
876.623
+
+
-
-
-
-
+
V
(Kgf)
M
(Kgf.m)
5000kgf
3m 2m
3m
A
B
C D
A
B
C D
B
C
3m
2m
5000kgf
3m 2m
3m
A
B
C D
1055.195kgf
2288.961kgf.m
535.714kgf
3944.805kgf
535.714kgf
5405.844kgf.m
535.714
535.714
-
3944.805
-
-
N
(Kgf ) Resistencia de Materiales I-II
pagina 16 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos
MA0

0
8

2MA

0
8

3
I

MB

3
I

6E

0

3

6MA3MB2EI0 (i)
MA

3
I

2MB

3
I

3
I

MC

3
I

6E


3

3MA12MB3MC2EI0 (ii)
MB

3
I

2MC

3
I

2
I

MD

2
I

6E

0

2

3MB10MC2MD3EI0 (iii)
MC

2
I

0
8

2MD

2
I

0
8

MD0

0
8

6E



2

2MC4MD3EI0 (iv)
De la gura obtenemos una ecuacion mas para resolver
MAMBVABp3q 0 MCMDVCDp2q 0
VAB
1
3
pMAMBq VCD
1
2
pMCMDq
¸
Fy0 VABVDC50000

1
3
pMAMBq


1
2
pMCMDq

50000

MA
3

MB
3

MC
2

MD
2
50000 (v)
Resolviendo las ecuaciones
MA 2288:961MB876:623 ;MC2483:766 ;MD 5405:844rkgfms
Fuerzas cortantes
VABVBA0
1
3
p2288:961876:623q 1055:195
VBCVCB0
1
3
p876:6232483:766q 535:714
VCDVDC0
1
2
p2483:7665405:844q 3944:805rkgfs
Resistencia de Materiales I-II
pagina 17 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos5000kgf
3m 2m
3m
A
B
C D
A
B
C D
B
C
3m
2m
5000kgf
3m 2m
3m
A
B
C D
1055.195kgf
2288.961kgf.m
535.714kgf
3944.805kgf
535.714kgf
5405.844kgf.m
1055.195
535.714
3944.805
2288.961
876.623
2483.766
2483.766
5405.844
876.623
+
+
-
-
-
-
+
V
(Kgf)
M
(Kgf.m)
5000kgf
3m 2m
3m
A
B
C D
A
B
C D
B
C
3m
2m
5000kgf
3m 2m
3m
A
B
C D
1055.195kgf
2288.961kgf.m
535.714kgf
3944.805kgf
535.714kgf
5405.844kgf.m
535.714
535.714
-
3944.805
-
-
N
(Kgf ) 5000kgf
3m 2m
3m
A
B
C D
A
B
C D
B
C
3m
2m
5000kgf
3m 2m
3m
A
B
C D
1055.195kgf
2288.961kgf.m
535.714kgf
3944.805kgf
535.714kgf
5405.844kgf.m
1055.195
535.714
3944.805
2288.961
876.623
2483.766
2483.766
5405.844
876.623
+
+
-
-
-
-
+
V
(Kgf)
M
(Kgf.m)
5000kgf
3m 2m
3m
A
B
C D
A
B
C D
B
C
3m
2m
5000kgf
3m 2m
3m
A
B
C D
1055.195kgf
2288.961kgf.m
535.714kgf
3944.805kgf
535.714kgf
5405.844kgf.m
535.714
535.714
-
3944.805
-
-
N
(Kgf )
Resistencia de Materiales I-II
pagina 18 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos5000kgf
3m 2m
3m
A
B
C D
A
B
C D
B
C
3m
2m
5000kgf
3m 2m
3m
A
B
C D
1055.195kgf
2288.961kgf.m
535.714kgf
3944.805kgf
535.714kgf
5405.844kgf.m
1055.195
535.714
3944.805
2288.961
876.623
2483.766
2483.766
5405.844
876.623
+
+
-
-
-
-
+
V
(Kgf)
M
(Kgf.m)
5000kgf
3m 2m
3m
A
B
C D
A
B
C D
B
C
3m
2m
5000kgf
3m 2m
3m
A
B
C D
1055.195kgf
2288.961kgf.m
535.714kgf
3944.805kgf
535.714kgf
5405.844kgf.m
535.714
535.714
-
3944.805
-
-
N
(Kgf )
Para la vigamostrada en la gura determinar las reacciones en los apoyos, el diagrama
de fuerza cortante y el diagrama de momento exionante EI=cte8.682
4.885
4.885
4.264
4.264
6.932
4.8 16.616
9
6.791
6.40
1.521
9.375
0.843 12.317
8.841
2.239
3.2
N
(T )
M
(T.m)-
+
+
+
- --
+
+
-
-
-
-
-
+
A B E F
G
DC
120KN 120KN
150KN
I 2I I
6m 4m 6m 4m 4m 4m
A E
G
C
0.01m
0.055m
0.025m
0.015m
30KN/m
25KN/m
100KN
60KN
A B C D E
2m 3m 6m 2.5m 2.5m 4.5m
60KN.m 60KN.m
800N 900N
600N/m
2m2m4m2m
800N
900N
600N/m
160N.m
A B C D
1200
900
-
+
1600
42.429
464.286
457.143
189.286
A
1
A
2
+
-
800
1494.643
905.357
439.286
460.759
Problema N°6Solución:8.682
4.885
4.885
4.264
4.264
6.932
4.8 16.616
9
6.791
6.40
1.521
9.375
0.843 12.317
8.841
2.239
3.2
N
(T )
M
(T.m)-
+
+
+
- --
+
+
-
-
-
-
-
+
A B E F
G
DC
120KN 120KN
150KN
I 2I I
6m 4m 6m 4m 4m 4m
A E
G
C
0.01m
0.055m
0.025m
0.015m
30KN/m
25KN/m
100KN
60KN
A B C D E
2m 3m 6m 2.5m 2.5m 4.5m
60KN.m 60KN.m
800N 900N
600N/m
2m2m4m2m
800N
900N
600N/m
160N.m
A B C D
1200
900
-
+
1600
42.429
464.286
457.143
189.286
A
1
A
2
+
-
800
1494.643
905.357
439.286
460.759 Resistencia de Materiales I-II
pagina 19 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos
MA

4
I

2MB

4
I

4
I

MC

4
I

6

3200p2q
4I

1800p2q
4I

4MA16MB4MC 15000 (i)
MB

4
I

2MC

4
I

0
8

MDp0q 6

1800p2q
4I
0

4MB8MC 5400 (ii)
resolviendo las ecuaciones se tiene
MA 1600MB 421:429 ;MC 464:286rN:ms
Cálculo de cortantes isostaticas
AB:
"
VAB1200
VBA 1200
;BC:
"
VBC450
VCB 450
rNs
Cálculo de las correcciones
C1
1600 p421:429q
4
294:643C2
421:429p464:286q
4
10:759
Cálculo de las cortantes nales
VAB1200p294:843q 1494:643 ;VBA 1200p294:843q 905:357
VBC45010:459439:286 ; VCB 45010:759 460:759rNs8.682
4.885
4.885
4.264
4.264
6.932
4.8 16.616
9
6.791
6.40
1.521
9.375
0.843 12.317
8.841
2.239
3.2
N
(T )
M
(T.m)-
+
+
+
- --
+
+
-
-
-
-
-
+
A B E F
G
DC
120KN 120KN
150KN
I 2I I
6m 4m 6m 4m 4m 4m
A E
G
C
0.01m
0.055m
0.025m
0.015m
30KN/m
25KN/m
100KN
60KN
A B C D E
2m 3m 6m 2.5m 2.5m 4.5m
60KN.m 60KN.m
800N 900N
600N/m
2m2m4m2m
800N
900N
600N/m
160N.m
A B C D
1200
900
-
+
1600
42.429
464.286
457.143
189.286
A
1
A
2
+
-
800
1494.643
905.357
439.286
460.759
M
(N.m)
V
(N)
Resistencia de Materiales I-II
pagina 20 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos800N 900N
600N/m
2294.643N 1344.643N 460.714N
464.286N.m
2Tn
2Tn
2Tn/m
3m 4m 3m
A
0 A B C D D
0
6.25
A B
C
D
A
B
C
D
B
C
D
D
10Tn
6Tn
8Tn
M
A
M
B
V
AB
+
-
+
-
3
3
6
6
5
5
+
-
14.985
3
14.985
3.015
3.015
2Tn
2Tn
2Tn/m
A
B
C
D
A
6Tn
3Tn
14.985Tn.m
14.985Tn.m
6Tn
3Tn
N
(Tn)
V
(Tn)
M
(TKn.m)
1m 3m 2m 3m
40Tn/m
20Tn
30Tn.m
A B C DE
A C DB
45
30
40/3
A
1
A
2
A
3 A
4
En la viga quebrada que se muestra calcule las reacciones , DFC, DMF , DFN y la
deexión en el punto B800N 900N
600N/m
2294.643N 1344.643N 460.714N
464.286N.m
2Tn
2Tn
2Tn/m
3m 4m 3m
A
0 A B C D D
0
6.25
A B
C
D
A
B
C
D
B
C
D
D
10Tn
6Tn
8Tn
M
A
M
B
V
AB
+
-
+
-
3
3
6
6
5
5
+
-
14.985
3
14.985
3.015
3.015
2Tn
2Tn
2Tn/m
A
B
C
D
A
6Tn
3Tn
14.985Tn.m
14.985Tn.m
6Tn
3Tn
N
(Tn)
V
(Tn)
M
(TKn.m)
1m 3m 2m 3m
40Tn/m
20Tn
30Tn.m
A B C DE
A C DB
45
30
40/3
A
1
A
2
A
3 A
4
Problema N°7Solución:800N 900N
600N/m
2294.643N 1344.643N 460.714N
464.286N.m
2Tn
2Tn
2Tn/m
3m 4m 3m
A
0 A B C D D
0
6.25
A B
C
D
A
B
C
D
B
C
D
D
10Tn
6Tn
8Tn
M
A
M
B
V
AB
+
-
+
-
3
3
6
6
5
5
+
-
14.985
3
14.985
3.015
3.015
2Tn
2Tn
2Tn/m
A
B
C
D
A
6Tn
3Tn
14.985Tn.m
14.985Tn.m
6Tn
3Tn
N
(Tn)
V
(Tn)
M
(TKn.m)
1m 3m 2m 3m
40Tn/m
20Tn
30Tn.m
A B C DE
A C DB
45
30
40/3
A
1
A
2
A
3 A
4 Resistencia de Materiales I-II
pagina 21 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos
La deformación en B y C son iguales por ser simetricas
MA0p0q 2MA

0
3
I

MB

3
I

6p0q 6E


3

6MA3MB2EI0 (i)
MA

3
I

2MB

3
I

5
I

MC

5
I

6

020:833p2:5q
5I

6E


3

3MA16MB5MC2EI 62:499 (ii)
MB

5
I

2MC

5
I

3
I

MD

3
I

6

20:8333p2:5q
5I
0

6EI


3

5MB16MC3MD2EI 62:499 (iii)
MC

3
I

2MD

3
I

MD0p0q 6p0q 6E


3

3MC6MD2EI0 (iv)
haciendo equilibrio
MAMB6p3q 0ñMAMB 18 (v)
VAB6Tn
Resolviendo las ecuaciones
MA 14:985MBMC3:015 ;MD 14:985rTn:ms
Cortantes isostaticos
VABVBAVCDVDC0VBC VCB5Tn
Cortantes nales
VABVBA0
1
3
p14:9853:015q 6Tn
VBCVCB5Tn
VCDVDC0
1
3
p3:01514:985q 6Tn
Resistencia de Materiales I-II
pagina 22 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos800N 900N
600N/m
2294.643N 1344.643N 460.714N
464.286N.m
2Tn
2Tn
2Tn/m
3m 4m 3m
A
0 A B C D D
0
6.25
A B
C
D
A
B
C
D
B
C
D
D
10Tn
6Tn
8Tn
M
A
M
B
V
AB
+
-
+
-
3
3
6
6
5
5
+
-
14.985
3
14.985
3.015
3.015
2Tn
2Tn
2Tn/m
A
B
C
D
A
6Tn
3Tn
14.985Tn.m
14.985Tn.m
6Tn
3Tn
N
(Tn)
V
(Tn)
M
(TKn.m)
1m 3m 2m 3m
40Tn/m
20Tn
30Tn.m
A B C DE
A C DB
45
30
40/3
A
1
A
2
A
3 A
4 800N 900N
600N/m
2294.643N 1344.643N 460.714N
464.286N.m
2Tn
2Tn
2Tn/m
3m 4m 3m
A
0 A B C D D
0
6.25
A B
C
D
A
B
C
D
B
C
D
D
10Tn
6Tn
8Tn
M
A
M
B
V
AB
+
-
+
-
3
3
6
6
5
5
+
-
14.985
3
14.985
3.015
3.015
2Tn
2Tn
2Tn/m
A
B
C
D
A
6Tn
3Tn
14.985Tn.m
14.985Tn.m
6Tn
3Tn
N
(Tn)
V
(Tn)
M
(TKn.m)
1m 3m 2m 3m
40Tn/m
20Tn
30Tn.m
A B C DE
A C DB
45
30
40/3
A
1
A
2
A
3 A
4
Resistencia de Materiales I-II
pagina 23 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos
Empleando la ecuacion de los tres momentos determinar:
1.
2.
3.
4.
EI=cte800N 900N
600N/m
2294.643N 1344.643N 460.714N
464.286N.m
2Tn
2Tn
2Tn/m
3m 4m 3m
A
0 A B C D D
0
6.25
A B
C
D
A
B
C
D
B
C
D
D
10Tn
6Tn
8Tn
M
A
M
B
V
AB
+
-
+
-
3
3
6
6
5
5
+
-
14.985
3
14.985
3.015
3.015
2Tn
2Tn
2Tn/m
A
B
C
D
A
6Tn
3Tn
14.985Tn.m
14.985Tn.m
6Tn
3Tn
N
(Tn)
V
(Tn)
M
(TKn.m)
1m 3m 2m 3m
40Tn/m
20Tn
30Tn.m
A B C DE
A C DB
45
30
40/3
A
1
A
2
A
3 A
4
B
C
Problema N°8
A1
2
3
p3q p45q 90A2
1
2
p3q p30qA3
1
2
p1q

40
3


20
3
A4
1
2
p2q

40
3


40
3
Solución:800N 900N
600N/m
2294.643N 1344.643N 460.714N
464.286N.m
2Tn
2Tn
2Tn/m
3m 4m 3m
A
0 A B C D D
0
6.25
A B
C
D
A
B
C
D
B
C
D
D
10Tn
6Tn
8Tn
M
A
M
B
V
AB
+
-
+
-
3
3
6
6
5
5
+
-
14.985
3
14.985
3.015
3.015
2Tn
2Tn
2Tn/m
A
B
C
D
A
6Tn
3Tn
14.985Tn.m
14.985Tn.m
6Tn
3Tn
N
(Tn)
V
(Tn)
M
(TKn.m)
1m 3m 2m 3m
40Tn/m
20Tn
30Tn.m
A B C DE
A C DB
45
30
40/3
A
1
A
2
A
3 A
4
B
C Resistencia de Materiales I-II
pagina 24 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos
MA 20Tn:m
MA

3
I

2MB

3
I

2
I

MC

2
I

6


90p1:5q
3I

20
{
3

2
{
3

3I

40
{
3

1
1
{
3

3I
0


3MA10MB2MC 323:333
10MB2MC 263:333 (i)
MB

2
I

2MC

2
I

3
I

MD

3
I

6

0
45

2
{
3
p3q

3I


2MB10MC3MD 180 (ii)
MC

3
I

2MD

3
I

MD0p0q 6


45

1
{
3
p3q

3I
0


3MC6MD 90 (iii)
Resolviendo las ecuaciones
MB 24:30MC 10:165MD 9:918
Cortantes isostaticas
AB:
"
VAB73:333
VBA 66:667
;BC:
"
VBC0
VCB0
;CD:
"
VCD 10
VDC 10
rTns
C11:433C2 7:068C3 8:23rTns
Cortantes anles
AB:
"
VAB71:90
VBA 68:10
;BC:
"
VBC7:068
VCB7:068
;CD:
"
VCD 9:918
VDC 9:918
rTns
Utilizando la ecuación general de los tres momentos para calcular la echa en el voladizo
ME

1
I

2MA

4
I

MB

3
I

6


10
{
3
p0:5q
I

90p1:5q
3I

20
{
3

1
{
3
2

3I

40
{
3

2
{
3
p2q

3I

6Epq
MA20Tn:m M B 24:30Tn:m

18:961
EI
Ò
Resistencia de Materiales I-II
pagina 25 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos-
+
40
71.90
31.90
11.90
68.1
7.068
9.918
-
+
20
24.30
10.165
19.835
9.918
40Tn/m
20Tn
30Tn.m
A B C DE
111.90Tn
75.168Tn 16.986Tn
9.918Tn
9.918Tn.m
A
B C
C
C
1
C C
1
C
B
D
O
18KN/m
16/3m
20/3m
5m
2m 2m
120KN
(2)
18KN/m
5m
4m
D
M
A
M
A
M
B
M
C
M
D
M
A
0
A B C DD
0
36
120
240
96
1
5 3
' ;'tan
cos 4 4
CC CC b
b
D D D
= = =D =
V
(Tn)
M
(Tn.m) -
+
40
71.90
31.90
11.90
68.1
7.068
9.918
-
+
20
24.30
10.165
19.835
9.918
40Tn/m
20Tn
30Tn.m
A B C DE
111.90Tn
75.168Tn 16.986Tn
9.918Tn
9.918Tn.m
A
B C
C
C
1
C C
1
C
B
D
O
18KN/m
16/3m
20/3m
5m
2m 2m
120KN
(2)
18KN/m
5m
4m
D
M
A
M
A
M
B
M
C
M
D
M
A
0
A B C DD
0
36
120
240
96
1
5 3
' ;'tan
cos 4 4
CC CC b
b
D D D
= = =D =
V
(Tn)
M
(Tn.m)
Resolver el portico con método de los tres momentos56.7
6.7
43.3
30
100
100
46.9
46.9
121.97
66.5
86.6
-
+
-
-
+
+
+
+
-
-
56.7
M
(KN.m)
V
(KN)
N
(KN)
120KN
18KN/m
A
B C
D
2m 2m 3m
4m
Para todos los casos
b=400mm
h=500mm
2
E=200KN/mm
A
B C
C
C
1
C C
1
C
B
D
O
18KN/m
5.333m
6.667m
5m
2m 2m
120KN
(2)
18KN/m
5m
4m
-
+
120KN
18KN/m
A
B C
D
2m 2m 3m
4m
-
+
22.634KN
67.391KN
4.149KN.m
49.366KN
52.609KN
11.589KN.m
- -
-
67.391
49.366
71.707
N
(KN)
28.1
1
5 3
' ;'tan
cos 4 4
CC CC b
b
D D D
= = =D =
1
5 3
' ;'tan
cos 4 4
CC CC b
b
D D D
= = =D =
Problema N°9Solución:Resistencia de Materiales I-II
pagina 26 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos-
+
40
71.90
31.90
11.90
68.1
7.068
9.918
-
+
20
24.30
10.165
19.835
9.918
40Tn/m
20Tn
30Tn.m
A B C DE
111.90Tn
75.168Tn 16.986Tn
9.918Tn
9.918Tn.m
A
B C
C
C
1
C C
1
C
B
D
O
18KN/m
16/3m
20/3m
5m
2m 2m
120KN
(2)
18KN/m
5m
4m
D
M
A
M
A
M
B
M
C
M
D
M
A
0
A B C DD
0
36
120
240
96
1
5 3
' ;'tan
cos 4 4
CC CC b
b
D D D
= = =D =
V
(Tn)
M
(Tn.m)
M0A

0
8

2MA

0
4
I

MB

4
I

6

0
96p2q
4I

6EI

0
0
4

8MA4MB1:5EI 288 (i)
MA

4
I

2MB

4
I

4
I

MC

4
I

6

96p2q
4I

240p2q
4I

6E


0
4

0

3
{
4

4


4MA16MB4MC2:625EI 1008 (ii)
MB

4
I

2MC

4
I

5
I

MD

5
I

6

240p2q
4I
0

6E

3
{
4
0
4

5
{
4
0
5

4MB18MC5MD2:265EI 720 (iii)
MC

5
I

2MD

5
I
0

MD0

0
8

6p0q 6


0

3
{
4

5
0


5MC10MD1:5EI0 (iv)
Resistencia de Materiales I-II
pagina 27 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos
¸
MO0
MAMDVA

16
3
4

VD

5
20
3

18p4q

16
3
2

120p2q 0
MAMD
28
3
pVAq
35
3
VD2880
Equilibrio en el miembro AB
MAMB18p4q p2q VAp4q 0
VA36
MBMA
4
Equilibrio en el miembro CD
MCVDp5q MD0
VD
MDMC
5
MAMD
28
3

36
MBMA
4


35
3

MDMC
5

2880
MAMD
7
3
pMBMAq
7
3
pMDMCq 48

4
3
MA
7
3
MB
4
3
MD
7
3
MC 48 (v)
Resolviendo las ecuaciones se tiene
MA 4:149 ;MB 57:614 ;MC 28:049 ;MD11:589rKN:ms
EI 16:234rKN:m
3
s
Cálculo de cortantes
VAB36
1
4
p4:149 p37:614qq 22:634
VBA 36
1
4
p4:149 p37:614qq 49:366
VBC60
1
4
p57:614 p28:049qq 67:391
VCB 60
1
4
p57:614 p28:049qq 52:609
VCDVDC0
1
5
p28:04911:589q 7:928rKNs
Resistencia de Materiales I-II
pagina 28 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos56.7
6.7
43.3
30
100
100
46.9
46.9
121.97
66.5
86.6
-
+
-
-
+
+
+
+
-
-
56.7
M
(KN.m)
V
(KN)
N
(KN)
120KN
18KN/m
A
B C
D
2m 2m 3m
4m
Para todos los casos
b=400mm
h=500mm
2
E=200KN/mm
A
B C
C
C
1
C C
1
C
B
D
O
18KN/m
5.333m
6.667m
5m
2m 2m
120KN
(2)
18KN/m
5m
4m
-
+
120KN
18KN/m
A
B C
D
2m 2m 3m
4m
-
+
22.634KN
67.391KN
4.149KN.m
49.366KN
52.609KN
11.589KN.m
- -
-
67.391
49.366
71.707
N
(KN)
28.1
1
5 3
' ;'tan
cos 4 4
CC CC b
b
D D D
= = =D =
1
5 3
' ;'tan
cos 4 4
CC CC b
b
D D D
= = =D = 67.391
49.366
22.634
7.928
52.609
-
+
+
+
-
-
+
V
(KN)
57.614
28.049
57.614
4.149
11.589
28.049
- -
+
-
+
+
-
120
77.169
5.118
2m
M
(KN.m)
36
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
A
B
C DB
C D
8KN
2m
2m
A
B
C D
16KN.m
10KN/m
8KN
6m 6m
2m
2m
7.46KN
8KN
14.17KN.m
25.51KN
41.95KN
8
7.46
34.49
25.51
7.46
26.95
1.82
17.82
31.52
14.17
45
18
-
-
-
+
+
+
+
-
-
+
V
(KN)
M
(KN.m)
N
(KN)
3m
A B C D E
F
G
2.5T
10T.m
3T/m
I 2I
I
2I
2I I
4m 2m 2m 5m 2m
5m
3m
Resistencia de Materiales I-II
pagina 29 Gilmer Calderón Quispe

Ingeniería Civil 3 Método de tres Momentos56.7
6.7
43.3
30
100
100
46.9
46.9
121.97
66.5
86.6
-
+
-
-
+
+
+
+
-
-
56.7
M
(KN.m)
V
(KN)
N
(KN)
120KN
18KN/m
A
B C
D
2m 2m 3m
4m
Para todos los casos
b=400mm
h=500mm
2
E=200KN/mm
A
B C
C
C
1
C C
1
C
B
D
O
18KN/m
5.333m
6.667m
5m
2m 2m
120KN
(2)
18KN/m
5m
4m
-
+
120KN
18KN/m
A
B C
D
2m 2m 3m
4m
-
+
22.634KN
67.391KN
4.149KN.m
49.366KN
52.609KN
11.589KN.m
- -
-
67.391
49.366
71.707
N
(KN)
28.1
1
5 3
' ;'tan
cos 4 4
CC CC b
b
D D D
= = =D =
1
5 3
' ;'tan
cos 4 4
CC CC b
b
D D D
= = =D =
Resistencia de Materiales I-II
pagina 30 Gilmer Calderón Quispe
Tags