Electrolyte Free Water Clearance

21,950 views 18 slides Jul 21, 2009
Slide 1
Slide 1 of 18
Slide 1
1
Slide 2
2
Slide 3
3
Slide 4
4
Slide 5
5
Slide 6
6
Slide 7
7
Slide 8
8
Slide 9
9
Slide 10
10
Slide 11
11
Slide 12
12
Slide 13
13
Slide 14
14
Slide 15
15
Slide 16
16
Slide 17
17
Slide 18
18

About This Presentation

this is an 18 slide subset of the way too long lecture on sodium called Hyponatremia Dreadnaught


Slide Content

True hyponatremia
Hyponatremia occurs when water intake
exceeds water excretion.

True hyponatremia
Hyponatremia does not occur when
sodium excretion exceeds sodium intake.
Negative salt balance
causes hypovolemia

If a person drinks more water than the kidney is
capable of clearing the excess water will dilute the
plasma.
Causes of hyponatremia: Increased
intake
To exceed the maximal renal clearance of water an
adult needs to drink about 18 liters a day.
clearing

Water clearance
Clearance as a general concept:
The clearance of any substance is the volume of
blood cleared of that substance in a set unit of
time.
Water clearance
Total water clearance is equal to urine output. Not a useful
concept.
 
C
X=
U
X
´V
P
X

Free water clearance and soup
Imagine urine divided into
two components
A solute component
containing all of the solute
at the same osmolality as
plasma.
Loss of this component
does not change plasma
osmolality
Ladle of soup
A free water component
providing the balance of
the volume.
Loss of this solute free
water will change serum
osmolality.
Boiling off water from soup
In regards to sodium
all that matters is the
free water component

Free water clearance
0.5 liter free water
1 liter 142 mOsm/Kg
0.5 liter 284 mOsm/Kg
Solute component
(plasma osmolality 284 mOsm/kg)
Use clearance to calculate the osmolar clearance
 
C
osm=
U
osm
´V
P
osm
 
C
osm
=
142´1
284
 
C
osm
=0.5

Free water clearance
1 liter 142 mOsm/Kg
0.5 liter 284 mOsm/Kg
Solute component
(Solute Clearance)
??
0.5 liter Zero mOsm/Kg
Free water component
(Free water Clearance)
The free water component
equals urine volume minus
the solute component

Free water clearance
0.5 liter 568 mOsm/Kg
1 liter 284 mOsm/Kg
-0.5 liter 568 mOsm/Kg

Free water clearance
1 liter 284 mOsm/Kg
0.5 liter 568 mOsm/Kg
Solute component
(plasma osmolality 284 mOsm/kg)
Use clearance to calculate the osmolar clearance
 
C
osm=
U
osm
´V
P
osm
 
C
osm
=
568´0.5
284
 
C
osm
=1.0

Free water clearance
Solute component
(Solute Clearance)
??
Free water component
(Free water Clearance)
0.5 liter 568 mOsm/Kg
– 0.5 liter Zero mOsm/Kg
1 liter 284 mOsm/Kg

Free water clearance: Implications
Dilute urine Solute free water
Dilute urine increases
serum osmolality
Concentrated urine Negative free water
Concentrated urine de-
creases serum osmolality
Na
+
Na
+

 
C
tH
2O
=V
C
tH
2
O
=C
osm
+C
H
2
O
Substitute V for C
tH
2O
V=C
osm
+C
H
2
O
C
H
2
O=V-C
osm
C
H
2
O
=V-
U
osm´V
P
osm
é
ë
ê
ù
û
ú
C
H
2
O=V´1-
U
osm
P
osm
é
ë
ê
ù
û
ú
Free water clearance: The math

Free water clearance: Math
Examples
 
C
H
2
O
=V´1-
U
osm
P
osm
é
ë
ê
ù
û
ú
C
H
2O
=1000´1-
50
285
é
ë
ê
ù
û
ú
C
H
2
O
=825ml
 
C
H
2
O
=V´1-
U
osm
P
osm
é
ë
ê
ù
û
ú
C
H
2O
=1000´1-
1200
285
é
ë
ê
ù
û
ú
C
H
2
O
=-3211ml

Electrolyte free water clearance
Osmolality doesn’t cause problems, rather
tonicity causes changes in cell volume
which cause clinical syndromes.
So free water clearance must be refined to
measure clinically significant changes in
tonicity.

Electrolyte free water clearance
Osmotically active particles (those that contribute
to tonicity):
Sodium
Potassium
Albumin, calcium and others
Sodium is the dominant osmotically active solute
of serum to the point that others can be ignored.
Urine has a significant potassium content so in
urine sodium and potassium are equal partners
in determining urinary tonicity.

Electrolyte free water clearance
Convert the free water clearance calculation to
electrolyte free water clearance
Substitute urine osmolality with the sum urine Na + K
Substitute serum osmolality with serum sodium

 
C
H
2O
=V´1-
U
osm
P
osm
é
ë
ê
ù
û
ú
Free water clearance

 
C
EFW
=V´1-
U
Na
+U
K
P
Na
é
ë
ê
ù
û
ú
Electrolyte free water clearance

Electrolyte free water clearance:
CHF vs. SIADH
Heart Failure
Urine Osmolality: 800
Serum Osmolality: 270
Urine Volume: 800
Urine Na: 5
Urine K: 40
Serum Na: 125
SIADH
Urine Osmolality: 800
Serum Osmolality: 270
Urine Volume: 800
Urine Na: 125
Urine K: 40
Serum Na: 125
 
C
H
2O
=V´1-
U
osm
P
osm
é
ë
ê
ù
û
ú
C
H
2O
=800´1-
800
270
é
ë
ê
ù
û
ú
C
H
2
O
=-1570ml
 
C
H
2O
=V´1-
U
osm
P
osm
é
ë
ê
ù
û
ú
C
H
2O
=800´1-
800
270
é
ë
ê
ù
û
ú
C
H
2
O
=-1570ml
 
C
EFW=V´1-
U
Na+U
K
P
Na
é
ë
ê
ù
û
ú
C
EFW=800´1-
5+40
125
é
ë
ê
ù
û
ú
C
EFW
=512
 
C
EFW=V´1-
U
Na+U
K
P
Na
é
ë
ê
ù
û
ú
C
EFW=800´1-
125+40
125
é
ë
ê
ù
û
ú
C
EFW
=-256

Etiology of hyponatremia
Hyponatremia occurs when water intake
exceeds water excretion.
Hyponatremia occurs when water intake
exceeds electrolyte free water clearance.
Ingestion > EFW clearance