Section 12.2The Wave Equation643
12.2 Exercises
In Exercises1-15solve the initial-boundary value problem. In some of these exercises, Theorem11.3.5(b)
or Exercise11.3.35will simplify the computation of the coefficients in the Fourier sine series.
1.utt= 9uxx,0< x <1, t >0,
u(0, t) = 0, u(1, t) = 0, t >0,
u(x,0) = 0, ut(x,0) =
ρ
x,0≤x≤
1
2
,
1−x,
1
2
≤x≤1
,0≤x≤1
2.utt= 9uxx,0< x <1, t >0,
u(0, t) = 0, u(1, t) = 0, t >0,
u(x,0) =x(1−x), ut(x,0) = 0,0≤x≤1
3.utt= 7uxx,0< x <1, t >0,
u(0, t) = 0, u(1, t) = 0, t >0,
u(x,0) =x
2
(1−x), ut(x,0) = 0,0≤x≤1
4.Cutt= 9uxx,0< x <1, t >0,
u(0, t) = 0, u(1, t) = 0, t >0,
u(x,0) = 0, ut(x,0) =x(1−x),0≤x≤1
5.utt= 7uxx,0< x <1, t >0,
u(0, t) = 0, u(1, t) = 0, t >0,
u(x,0) = 0ut(x,0) =x
2
(1−x),0≤x≤1
6.utt= 64uxx,0< x <3, t >0,
u(0, t) = 0, u(3, t) = 0, t >0,
u(x,0) =x(x
2
−9), ut(x,0) = 0,0≤x≤3
7.utt= 4uxx,0< x <1, t >0,
u(0, t) = 0, u(1, t) = 0, t >0,
u(x,0) =x(x
3
−2x
2
+ 1), ut(x,0) = 0,0≤x≤1
8.Cutt= 64uxx,0< x <3, t >0,
u(0, t) = 0, u(3, t) = 0, t >0,
u(x,0) = 0, ut(x,0) =x(x
2
−9),0≤x≤3
9.utt= 4uxx,0< x <1, t >0,
u(0, t) = 0, u(1, t) = 0, t >0,
u(x,0) = 0, ut(x,0) =x(x
3
−2x
2
+ 1),0≤x≤1
10.utt= 5uxx,0< x < π, t >0,
u(0, t) = 0, u(π, t) = 0, t >0,
u(x,0) =xsinx, ut(x,0) = 0,0≤x≤π
11.utt=uxx,0< x <1, t >0,
u(0, t) = 0, u(1, t) = 0, t >0,
u(x,0) =x(3x
4
−5x
3
+ 2), ut(x,0) = 0,0≤x≤1
12.Cutt= 5uxx,0< x < π, t >0,
u(0, t) = 0, u(π, t) = 0, t >0,
u(x,0) = 0, ut(x,0) =xsinx,0≤x≤π
13.utt=uxx,0< x <1, t >0,
u(0, t) = 0, u(1, t) = 0, t >0,
u(x,0) = 0, ut(x,0) =x(3x
4
−5x
3
+ 2),0≤x≤1