Section 5.4The Method of Undetermined Coefficients I61
5.4.4.IfyDue
2x
, theny
00
C2y
0
CyDe
2x
Œ.u
00
C4u
0
C4u/C2.u
0
C2u/CuDe
2x
.715xC
9x
2
/sou
00
C6u
0
C9uD 715xC9x
2
andupDACBxCCx
2
, where2CC6.BC2Cx/C
9.ACBxCCx
2
/D 715xC9x
2
. Therefore,9CD9,9BC12CD 15,9AC6BC2CD 7,
soCD1,BD 3,AD1, andupD13xCx
2
. Therefore,ypDe
2x
.13xCx
2
/.
5.4.6.IfyDue
x
, theny
00
y
0
2yDe
x
Œ.u
00
C2u
0
Cu/.u
0
Cu/2uDe
x
.9C2x4x
2
/so
u
00
Cu
0
2uD9C2x4x
2
, andupDACBxCCx
2
, where2CC.BC2Cx/2.ACBxCCx
2
/D
9C2x4x
2
. Therefore,2CD 4,2BC2CD2,2ACBC2CD9, soCD2,BD1,AD 2,
andupD 2CxC2x
2
. Therefore,ypDe
x
.2CxC2x
2
/.
5.4.8.IfyDue
x
, theny
00
3y
0
C2yDe
x
Œ.u
00
C2u
0
Cu/3.u
0
Cu/C2uDe
x
.34x/, so
u
00
u
0
D34xandupDAxCBx
2
, where2B.AC2Bx/D34x. Therefore,2BD 4,
AC2BD3, soBD2,AD1, andupDx.1C2x/. Therefore,ypDxe
x
.1C2x/.
5.4.10.IfyDue
2x
, then2y
00
3y
0
2yDe
2x
Œ2.u
00
C4u
0
C4u/3.u
0
C2u/2uDe
2x
.6C
10x/, so2u
00
C5u
0
D 6C10xandupDAxCBx
2
, where2.2B/C5.AC2Bx/D 6C10x.
Therefore,10BD10,5AC4BD 6, soBD1,AD 2, andupDx.2Cx/. Therefore,ypD
xe
2x
.2Cx/.
5.4.12.IfyDue
x
, theny
00
2y
0
CyDe
x
Œ.u
00
C2u
0
Cu/2.u
0
Cu/CuDe
x
.16x/, so
u
00
D16xIntegrating twice and taking the constants of integration to be zero yieldsupDx
2
1
2
x
.
Therefore,ypDx
2
e
x
1
2
x
.
5.4.14.IfyDue
x=3
, then9y
00
C6y
0
CyDe
x=3
9
u
00
2u
0
3
C
u
9
C6
u
0
u
3
Cu
D
e
x=3
.24xC4x
2
/, so9u
00
D24xC4x
2
, oru
00
D
1
9
.24xC4x
2
/. Integrating twice
and taking the constants of integration to be zero yieldsupD
x
2
27
.32xCx
2
/. Therefore,ypD
x
2
e
x=3
27
.32xCx
2
/.
5.4.16.IfyDue
x
, theny
00
6y
0
C8yDe
x
Œ.u
00
C2u
0
Cu/6.u
0
Cu/C8uDe
x
.116x/, so
u
00
4u
0
C3uD116xandupDACBx, where4BC3.ACBx/D116x. Therefore,3BD 6,
3A4BD11, soBD 2,AD1andupD12x. Therefore,ypDe
x
.12x/. The characteristic
polynomial of the complementary equation isp.r/Dr
2
6rC8D.r2/.r4/, sofe
2x
; e
4x
gis a
fundamental set of solutions of the complementary equation. Therefore,yDe
x
.12x/Cc1e
2x
Cc2e
4x
is the general solution of the nonhomogeneous equation.
5.4.18.IfyDue
x
, theny
00
C2y
0
3yDe
x
Œ.u
00
C2u
0
Cu/C2.u
0
Cu/3uD 16xe
x
, so
u
00
C4u
0
D 16xandupDAxCBx
2
, where2BC4.AC2Bx/D 16x. Therefore,8BD 16,
4AC2BD0, soBD 2,AD1, andupDx.12x/. Therefore,ypDxe
x
.12x/. The characteristic
polynomial of the complementary equation isp.r/Dr
2
C2r3D.rC3/.r1/, sofe
x
; e
3x
gis a
fundamental set of solutions of the complementary equation. Therefore,yDxe
x
.12x/Cc1e
x
Cc2e
3x
is the general solution of the nonhomogeneous equation.
5.4.20.IfyDue
2x
, theny
00
4y
0
5yDe
2x
Œ.u
00
C4u
0
C4u/4.u
0
C2u/5uD9e
2x
.1Cx/, so
u
00
9uD9C9xandupDACBx, where9.ACBx/D9C9x. Therefore,9BD 9,9AD9,
soBD 1,AD 1, andupD 1x. Therefore,ypD e
2x
.1Cx/. The characteristic polynomial
of the complementary equation isp.r/Dr
2
4r5D.r5/.rC1/, sofe
x
; e
5x
gis a fundamental